Câu hỏi:
21/08/2022 169Trung tuyến AD và BE của Δ ABC cắt nhau tại G. Chứng minh rằng:
SDEG = SCEG = SCED = SABG = SABE = SABC.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đặt SDEG = a. Ta cần chứng minh:
SCEG = 2a; SCED = 3a; SABG = 4a; SABE = 6a; SABC = 12a
Đường trung tuyến AD và BE cứt nhau tại G nên G là trọng tâm của Δ ABC
⇒ Khoảng cách từ G đến các đỉnh của tam giác bằng độ dài các đường trung tuyến tương ứng.
Ta có SBDG = 2SDGE = 2a (vì chung đường cao kẻ từ D xuống BE và BG = 2GE )
SBDG = SCGD = 2a (vì chung đường cao kẻ từ G xuống BC và BD = DC )
Do đó SBDC = SBDG + SCGD = 2a + 2a = 4a.
Lại có SCEG = SBGC = .4a = 2a (vì chung đường cao kẻ từ C xuống BE và BG = 2GE )
+ SEDC = SEBD = 2a + a = 3a (vì chung đường cao kẻ từ E xuống BC và BD = DC )
+ SAGB = 2SGBD = 4a (vì chung đường cao kẻ từ B xuống AD và AG = 2GD )
+ SAEB = SAGB = .4a = 6a (vì chung đường cao kẻ từ A xuống BE và BE = BG )
+ SABC = 2SABE = 2.6a = 12a.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 4:
Câu 5:
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai ?
A. Hình vuông là đa giác đều.
B. Tổng các góc của đa giác lồi 8 cạnh là 10800.
C. Hình thoi là đa giác đều.
D. Số đo góc của hình bát giác đều là 135,50.
Câu 6:
Câu 7:
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Cách tìm mẫu thức chung cực hay, nhanh nhất
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
về câu hỏi!