Câu hỏi:
21/08/2022 209Trung tuyến AD và BE của Δ ABC cắt nhau tại G. Chứng minh rằng:
SDEG = SCEG = SCED = SABG = SABE = SABC.
Quảng cáo
Trả lời:

Đặt SDEG = a. Ta cần chứng minh:
SCEG = 2a; SCED = 3a; SABG = 4a; SABE = 6a; SABC = 12a
Đường trung tuyến AD và BE cứt nhau tại G nên G là trọng tâm của Δ ABC
⇒ Khoảng cách từ G đến các đỉnh của tam giác bằng độ dài các đường trung tuyến tương ứng.
Ta có SBDG = 2SDGE = 2a (vì chung đường cao kẻ từ D xuống BE và BG = 2GE )
SBDG = SCGD = 2a (vì chung đường cao kẻ từ G xuống BC và BD = DC )
Do đó SBDC = SBDG + SCGD = 2a + 2a = 4a.
Lại có SCEG = SBGC = .4a = 2a (vì chung đường cao kẻ từ C xuống BE và BG = 2GE )
+ SEDC = SEBD = 2a + a = 3a (vì chung đường cao kẻ từ E xuống BC và BD = DC )
+ SAGB = 2SGBD = 4a (vì chung đường cao kẻ từ B xuống AD và AG = 2GD )
+ SAEB = SAGB = .4a = 6a (vì chung đường cao kẻ từ A xuống BE và BE = BG )
+ SABC = 2SABE = 2.6a = 12a.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án C.
Ta cần nhớ định nghĩa: Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.
Lời giải

Xét hình bình bình ABCD có AB = CD = 8( cm ) và AD = BC = 6( cm )
Từ A kẻ các đường cao AH,AK.
Khi đó ta có:
+ Shbh = AH.CD = 8.AH
+ Shbh = AK.BC = 6.AK
Mà một hình bình hành thì chỉ có một diện tích chung nên 8.AH = 6.AK
Nếu độ dài đường cao thứ nhất là AH = 5( cm ) thì:
8.5 = 6.AK ⇔ AK = = ( cm ) là độ dài đường cao thứ hai.
Nếu độ dài đường cao thứ nhất là AK = 5( cm ) thì:
8.AH = 6.5 ⇔ AH = = ( cm ) là độ dài đường cao thứ hai.
Vậy bài toán này có hai đáp số
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.