Câu hỏi:

21/08/2022 288

Cho tam giác nhọn ABC, các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh rằng: Cho tam giác nhọn ABC, các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh rằng: (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác nhọn ABC, các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh rằng: (ảnh 2)

Gọi diện tích ABC, ABH,BCH,CAH lần lượt là S,S1,S2,S3.

Ta có S = S1 + S2 + S3.

+ Các tam giác ABC và ABH có chung đáy AB nên tỉ số đường cao bằng tỉ số diện tích: Cho tam giác nhọn ABC, các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh rằng: (ảnh 3)

+ Tương tự: Cho tam giác nhọn ABC, các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh rằng: (ảnh 4)

Khi đó ta có Cho tam giác nhọn ABC, các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh rằng: (ảnh 5)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án C.

Ta cần nhớ định nghĩa: Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.

Lời giải

Hai cạnh của một hình bình hành có độ dài là 6cm và 8cm. Một trong các đường cao có độ dài là 5cm. (ảnh 1)

Xét hình bình bình ABCD có AB = CD = 8( cm ) và AD = BC = 6( cm )

Từ A kẻ các đường cao AH,AK.

Khi đó ta có:

+ Shbh = AH.CD = 8.AH

+ Shbh = AK.BC = 6.AK

Mà một hình bình hành thì chỉ có một diện tích chung nên 8.AH = 6.AK

Nếu độ dài đường cao thứ nhất là AH = 5( cm ) thì:

8.5 = 6.AK AK = 8.56 = 203 ( cm ) là độ dài đường cao thứ hai.

Nếu độ dài đường cao thứ nhất là AK = 5( cm ) thì:

8.AH = 6.5 AH = 6.58 = 154 ( cm ) là độ dài đường cao thứ hai.

Vậy bài toán này có hai đáp số

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP