Câu hỏi:
13/07/2024 4,987Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:
b2x2 – (b2 + c2 – a2)x + c2 > 0, ∀x ∈ ℝ.
Quảng cáo
Trả lời:
Vì a, b, c là độ dài ba cạnh của một tam giác nên a, b, c > 0.
Coi f(x) = b2x2 – (b2 + c2 – a2)x + c2 là một tam thức bậc hai ẩn x dạng f(x) = Ax2 + Bx + C.
Xét phương trình bậc hai b2x2 – (b2 + c2 – a2)x + c2 = 0 có:
A = b2 > 0 (vì b là độ dài cạnh của tam giác)
∆ = B2 – 4AC = [– (b2 + c2 – a2)]2 – 4.b2.c2
= (b2 + c2 – a2)2 – (2bc)2
= (b2 + c2 – a2 – 2bc)(b2 + c2 – a2 + 2bc)
= [(b – c)2 – a2][(b + c)2 – a2]
= (b – c – a)(b – c + a)(b + c – a)(b + c + a)
Vì a, b, c là ba cạnh của tam giác nên ta có:
a + b – c > 0
b + c – a > 0
b + c + a > 0
b – c – a = b – (c + a) < 0
Do đó ∆ < 0.
Vậy b2x2 – (b2 + c2 – a2)x + c2 > 0, ∀x ∈ ℝ (điều cần phải chứng minh).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét x2 – 2(m – 1)x + 4m2 – m = 0 có:
a = 1 > 0
∆’ = [–(m – 1)]2 – 1.(4m2 – m) = m2 – 2m + 1 – 4m2 + m = –3m2 – m + 1 .
a)
Để phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm phân biệt
⇔ ∆’ > 0
⇔ –3m2 – m + 1 > 0
Xét phương trình bậc hai –3m2 – m + 1 = 0 có a = –3 < 0 và ∆ma = (–1)2 – 4.(–3).1 = 13 > 0
Do đó, phương trình –3m2 – m + 1 = 0 có hai nghiệm phân biệt là:
Do đó, –3m2 – m + 1 > 0
Vậy khi thì phương trình x2 – 2(m – 1)x + 4m2 – m = 0 có hai nghiệm phân biệt.
Lời giải
a)
Xét phương trình –x2 + (m + 1)x – 2m + 1 = 0 có:
a = –1 < 0
∆ = (m + 1)2 – 4.(–1).(–2m + 1) = m2 + 2m + 1 – 8m + 4 = m2 – 6m + 5
Để –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ ⇔ Δ ≤ 0
⇔ m2 – 6m + 5 ≤ 0
Xét phương trình m2 – 6m + 5 = 0 có a = 1 > 0 và Δm = (–6)2 – 4.1.5 = 16 > 0
Do đó, phương trình m2 – 6m + 5 = 0 có hai nghiệm phân biệt là:
m1 = 1; m2 = 5
Do đó, m2 – 6m + 5 ≤ 0 ⇔ 1 ≤ m ≤ 5
Vậy khi 1 ≤ m ≤ 5 thì –x2 + (m + 1)x – 2m + 1 ≤ 0, ∀x ∈ ℝ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận