Câu hỏi:
12/07/2024 25,350Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Giả sử phương trình chính tắc của (E) là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a > b > 0).
Vì chiều rộng của hầm là 12 m nên OA = 12 : 2 = 6 (m), do đó điểm A có tọa độ (6; 0).
Khoảng cách từ điểm cao nhất của elip so với mặt đường là 3 m nên OB = 3 m, do đó điểm B có tọa độ (0; 3).
Do các điểm B(0; 3) và A(6; 0) thuộc (E) nên thay vào phương trình của (E) ta có:
\(\frac{{{0^2}}}{{{a^2}}} + \frac{{{3^2}}}{{{b^2}}} = 1 \Rightarrow {b^2} = {3^2} = 9\)
\(\frac{{{6^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1 \Rightarrow {a^2} = {6^2} = 36\)
Suy ra phương trình của (E) là
\(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\).
Với những xe tải có chiều cao 2,8 m, chiều rộng của xe tải là 3 m, nếu xe chạy chính giữa hầm thì khoảng cách từ tâm xe tới mỗi bên xe khoảng 3 : 2 = 1,5 m, tương ứng với x = 1,5. Thay vào phương trình của elip để ta tìm ra độ cao y của điểm M (có hoành độ bằng 1,5 thuộc (E)) so với trục Ox.
\(\frac{{{x_M}^2}}{{36}} + \frac{{{y_M}^2}}{9} = 1\)
Suy ra: \({y_M} = 3.\sqrt {1 - \frac{{x_M^2}}{{36}}} = 3.\sqrt {1 - \frac{{{{1,5}^2}}}{{36}}} \approx 2,905 > 2,8\)
Kết luận: Ô tô tải có thể đi được qua hầm, tuy nhiên cần khuyến cáo ô tô phải đi vào chính giữa hầm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
về câu hỏi!