Câu hỏi:

18/09/2022 1,692

Cho hàm số fx=sinx,khi   cosx01+cosx,khi   cosx<0 Hàm số f có bao nhiêu điểm gián đoạn trên khoảng 0;  2019 ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số f(x)  trên đoạn 0;  2π, khi đó fx=sinx,khi   x0;  π23π2;  2π1+cosx,khi   xπ2;  3π2

Ta có limx0+fx=0=f0;  limx2πfx=0=f2π

Hàm số rõ ràng liên tục trên các khoảng 0;  π2;  π2;  3π2 và 3π2;  2π

Ta xét tại x=π2

limxπ2+fx=limxπ2+1+cosx=1;  limxπ2fx=limxπ2sinx=1;  fπ2=1

Như vậy limxπ2fx=limxπ2+f(x=fπ2 nên hàm số f(x)  liên tục tại điểm x=π2

Ta xét tại x=3π2

limx3π2fx=limx3π2+sinx=1;  limx3π2fx=limx3π21+cosx=1

limx3π2fxlimx3π2+fx nên hàm số f(x)  gián đoạn tại điểm x=3π2

Do đó, trên đoạn 0;  2π hàm số chỉ gián đoạn tại điểm x=3π2.

Do tính chất tuần hoàn của hàm số y=cosx y=sinx suy ra hàm số gián đoạn tại các điểm x=3π2+k2π,  k

Ta có x0;  20180<3π2+k2π<201834<k<1009π34320,42

k  nên k0,  1,  2,  ...,  320. Vậy hàm số f có 321 điểm gián đoạn trên khoảng 0;  2018

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hàm số fx=3x+2khi   x<1x21khi   x1 . Khẳng định nào sau đây đúng?

Lời giải

Hàm số xác định trên R

Ta có: f1=0;  limx1+fx=limx1+x21=0,  limx1fx=limx13x+2=1

Suy ra f1=limx1+fxlimx1+fx

Vậy hàm số đã cho liên tục trên nửa khoảng 1;  + và khoảng ;  1

Lời giải

Ta có limx1x+733x+1x1=limx1x+732x1+limx123x+1x1

          =limx11x+723+2x+73+4+limx132+3x+1

          =11234

          =23

f1=a

Để hàm số liên tục tại x=1  thì a=23

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay