Trong các khẳng định sau
(I) f(x) liên tục trên đoạn và thì phương trình f(x)=0 có nghiệm
(II) f(x) không liên tục trên và thì phương trìnhf(x)=0 vô nghiệm
(III) f(x) liên tục trên đoạn và thì tồn tại ít nhất một số sao cho
(IV) f(x) liên tục trên đoạn và thì tồn tại ít nhất một số sao cho
Số khẳng định đúng là
Trong các khẳng định sau
(I) f(x) liên tục trên đoạn và thì phương trình f(x)=0 có nghiệm
(II) f(x) không liên tục trên và thì phương trìnhf(x)=0 vô nghiệm
(III) f(x) liên tục trên đoạn và thì tồn tại ít nhất một số sao cho
(IV) f(x) liên tục trên đoạn và thì tồn tại ít nhất một số sao cho
Số khẳng định đúng là
A. 1
B. 2
C. 3
D. 4
Quảng cáo
Trả lời:

Chọn đáp án B
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 1
B. 2
C. 3
D. 0
Lời giải
Xét phương trình:
Đặt:
Từ giả thiết
Do đó nên phương trình (1) có ít nhất một nghiệm trong
Ta nhận thấy:
mà nên phương trình (1) có ít nhất một nghiệm
Tương tự: mà nên phương trình (1) có ít nhất một nghiệm
Như vậy phương trình đã cho có ít nhất 3 nghiệm thực phân biệt, mặt khác phương trình bậc 3 có tối đa 3 nghiệm.
Lời giải
a)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Phương trình (1) vô nghiệm với mọi a, b, c
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.