Quảng cáo
Trả lời:
Bổ đề: Phương trình đa thức bậc lẻ luôn có ít nhất một nghiệm, với mọi giá trị của
Chứng minh:
+ Xét hàm số đây là hàm đa thức, xác định trên R nên liên tục trên R
Ta có: nên tồn tại sao cho
nên tồn tại sao cho
Do đó tồn tại sao cho
Vậy phương trình đa thức bậc lẻ luôn có ít nhất một nghiệm, với mọi giá trị của
Áp dụng:
Đặt Hàm số f(x) liên tục trên R
+ Xét . Khi đó phương trình trở thành
+ Xét .
Hàm f(x) có bậc cao nhất là là đa thức bậc lẻ nên f(x)=0 có ít nhất một nghiệm với
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét phương trình:
Đặt:
Từ giả thiết
Do đó nên phương trình (1) có ít nhất một nghiệm trong
Ta nhận thấy:
mà nên phương trình (1) có ít nhất một nghiệm
Tương tự: mà nên phương trình (1) có ít nhất một nghiệm
Như vậy phương trình đã cho có ít nhất 3 nghiệm thực phân biệt, mặt khác phương trình bậc 3 có tối đa 3 nghiệm.
Lời giải
a)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.