Câu hỏi:

19/09/2022 3,182

Cho hai dãy số un, (vn) được xác định như sau u1=3,v1=2  un+1=un2+2vn2vn=1=2un.vn với n2.Công thức tổng quát của hai dãy un và (vn)

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Chứng minh un2vn=212n    (1)

Ta có un=2vn=un12+2vn1222un1vn1=un12vn12

Mặt khác u12v1=322=212 nên  (1) đúng với n=1

Giả sử uk2vk=212k, ta có uk12vk+1=u2vk2=212k+1

Vậy (1) đúng với n1

Ta có un+2vn=2+12n

Do đó ta suy ra 2un=2+12n+212n22vn=2+12n212nun=122+12n+212nvn=1222+12n212n

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với mọi n*, khẳng định nào sau đây sai?

Xem đáp án » 19/09/2022 1,454

Câu 2:

Chứng minh rằng số đường chéo của một đa giác lồi n cạnh n4 là nn32.

Xem đáp án » 12/07/2024 1,093

Câu 3:

Chứng minh rằng với mọi số nguyên dương n, ta có 11.2.3+12.3.4+...+1nn+1n+2=nn+34n+1n+2     (1)

Xem đáp án » 12/07/2024 854

Câu 4:

Chứng minh rằng mọi n – giác lồi (n5) đều được chia thành hữu hạn ngũ giác lồi.

Xem đáp án » 12/07/2024 722

Câu 5:

Chứng minh rằng với mọi số nguyên dương n2 , ta có 1.22+2.33+3.44+...+n1n2=nn213n+212      (1)

Xem đáp án » 12/07/2024 685

Câu 6:

Chứng minh rằng với mọi số nguyên dương n, ta có 1.4+2.7+...+n(3n+1)=nn+12        (1)

Xem đáp án » 12/07/2024 557
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua