Câu hỏi:

13/07/2024 5,739

Cho hình chóp S.ABC. Gọi G và G' lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Chứng minh GG' song song với SA.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABC. Gọi G và G' lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Chứng minh GG' song song với SA. (ảnh 1)

Gọi M là trung điểm của BC nên MGMA=13;  MG'MS=13 (tính chất của trọng tâm).

Xét ∆SAM, có MGMA=MG'MS theo định lí Ta-lét đảo suy ra GG’ // SA

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện ABCD. Có bao nhiêu cặp đường thẳng chéo nhau?

Xem đáp án » 21/09/2022 13,410

Câu 2:

Cho tứ diện ABCD. Gọi M, N là trung điểm của AB, BC và P là điểm nằm trên cạnh CD. Gọi Q là giao điểm của DA với mặt phẳng (MNP). Chứng minh PQ // MN và PQ // AC

Xem đáp án » 13/07/2024 10,054

Câu 3:

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án » 21/09/2022 7,681

Câu 4:

Cho hình chóp S.ABCD. Gọi I, J lần lượt là trung điểm của AB và BC. Giao tuyến của hai mặt phẳng (SAC) và (SIJ) là một đường thẳng song song với

Xem đáp án » 21/09/2022 6,983

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn là CD. Gọi M là trung điểm của SA, N là giao điểm của cạnh SB và mặt phẳng (MCD). Mệnh đề nào sau đây đúng?

Xem đáp án » 21/09/2022 6,919

Câu 6:

Cho hình chóp S.ABCD đáy ABCD là hình bình hành. Gọi M, N, P, Q là các điểm lần lượt trên BC, SC, SD, AD sao cho MN // BS, NP // CD, MQ // CD

a) Chứng minh PQ // SA

Xem đáp án » 13/07/2024 3,486

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store