Câu hỏi:

26/09/2022 1,034

Cho hình chóp S.ABCD. Gọi O là giao điểm của AC và BD. Xét hai mệnh đề

(I). Nếu ABCD là hình bình hành thì SA+SB+SC+SD=4SO .

(II). Nếu SA+SB+SC+SD=4SO  thì ABCD là hình bình hành.

Mệnh đề nào đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án D

Cho hình chóp S.ABCD. Gọi O là giao điểm của AC và BD. Xét hai mệnh đề  (I). Nếu ABCD là hình\ (ảnh 1)

Gọi M, N lần lượt là trung điểm của AC và BD. Do O là giao điểm của AC và BD nên

SA+SB+SC+SD=4SO

OS+SA+OS+SC+OS+SB+OS+SD=0

OA+OC+OB+OD=0

2OM+2ON=0OM=ONOMN

ABCD là hình bình hành.

Vậy mệnh đề (I) và (II) đều đúng.

Bình luận: Để chứng minh mệnh đề (I) và (II) đúng, ta áp dụng: Cho Aa,Bb và O=ab.

Khi đó OA=OBOAB.

Chứng minh: Nếu A không trùng O thì B không trùng O (do OA=OB) OAa và OBb

Nhưng OA=OBO,A,B thẳng hàng abab=a (trái với giả thiết O=ab)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình lăng trụ tam giác ABC.A'B'C' có vectơ AA' = vectơ a, vectơ AB = vectơ b, vectơ AC = vectơ c. Hãy (ảnh 1)

Ta có B'C=B'B+BC=AA'+ACAB=ab+c

BC'=BC+CC'=ACAB+AA'=ab+c

Lời giải

Chọn đáp án D

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O, M là điểm thay đổi trên SO. Tỉ số SM/SO (ảnh 1)

Gọi I là điểm thỏa mãn SI=4IO

P=MI+IS2+MI+IA2+MI+IB2+MI+IC2+MI+ID2

=5MI2+IS2+IA2+IB2+IC2+ID2+2MIIS+IA+IB+IC+ID

=5MI2+IS2+IA2+IB2+IC2+ID2+2MIIS+4IO+OA+OB+OC+OD

=5MI2+IS2+IA2+IB2+IC2+ID2do  SI=4IO;OA+OB+OC+OD=0

Vậy PminMISMSO=45

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP