Câu hỏi:
13/07/2024 1,577Cho Hình 7, biết AB = AC và BE là tia phân giác của ; CF là tia phân giác của . Chứng minh rằng:
a) ΔABE = ΔACF;
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
GT |
DABC có AB = AC, BE là tia phân giác của , CF là tia phân giác của . |
KL |
a) ΔABE = ΔACF; b) Tam giác OEF cân. |
Chứng minh (Hình 7):
a) Vì AB = AC (giả thiết) nên tam giác ABC cân tại A.
Suy ra (tính chất) (1)
Ta có BE là tia phân giác của (giả thiết)
Nên (tính chất tia phân giác) (2)
Lại có CF là tia phân giác của (giả thiết)
Nên (tính chất tia phân giác) (3)
Từ (1), (2), (3) suy ra .
Xét ΔABE và ΔACF có:
là góc chung,
AB = BC (giả thiết),
(chứng minh trên).
Do đó ΔABE = ΔACF (g.c.g).
Vậy ΔABE = ΔACF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
b) Tam giác có hai góc bằng 45° có phải là tam giác cân hay không? Hãy tìm góc còn lại của tam giác này.
Câu 5:
Cho tam giác MNP cân tại M. Kể tên các cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của tam giác cân đó.
về câu hỏi!