Câu hỏi trong đề: Giải SBT Toán 7 CTST Bài 30. Tam giác cân có đáp án !!
Quảng cáo
Trả lời:
b) Vì ΔABE = ΔACF (chứng minh câu a).
Nên BE = CF (hai cạnh tương ứng).
Xét ΔOBC có
Do đó ΔOBC cân tại O.
Suy ra OB = OC (tính chất tam giác cân).
Ta có: BE = OB + OE, CF = OC + OF.
Mà BE = CF, OB = OC (chứng minh trên).
Suy ra OE = OF
Do đó ΔOEF cân tại O.
Vậy tam giác OEF cân tại O.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) Giả sử tam giác MNP có như hình vẽ dưới đây.
Tam giác MNP có nên là tam giác cân tại M.
Xét DMNP có: (định lí tổng ba góc trong một tam giác).
Suy ra
Do đó
Tam giác MNP cân tại M có nên là vừa là tam giác cân vừa là tam giác vuông.
Vậy tam giác có hai góc bằng 45° thì góc còn lại là 90°. Tam giác này là tam giác vuông cân.
Lời giải
GT |
DABC có AB = AC, BE là tia phân giác của , CF là tia phân giác của . |
KL |
a) ΔABE = ΔACF; b) Tam giác OEF cân. |
Chứng minh (Hình 7):
a) Vì AB = AC (giả thiết) nên tam giác ABC cân tại A.
Suy ra (tính chất) (1)
Ta có BE là tia phân giác của (giả thiết)
Nên (tính chất tia phân giác) (2)
Lại có CF là tia phân giác của (giả thiết)
Nên (tính chất tia phân giác) (3)
Từ (1), (2), (3) suy ra .
Xét ΔABE và ΔACF có:
là góc chung,
AB = BC (giả thiết),
(chứng minh trên).
Do đó ΔABE = ΔACF (g.c.g).
Vậy ΔABE = ΔACF.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.