Câu hỏi:

13/07/2024 710

c) Chứng minh rằng NP // EF

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Vì tam giác MNP cân tại M (chứng minh câu b).

Nên MNP^=MPN^ (tính chất tam giác cân)

Xét DMNP có: M^+MNP^+MPN^=180° (định lí tổng ba góc trong một tam giác).

Suy ra MNP^=MPN^=180°M^2=180°80°2=50°.

Ta có MNP^=E^ (cùng bằng 50°).

Mà hai góc này ở vị trí đồng vị.

Suy ra NP // EF

Vậy NP // EF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

b) Tam giác có hai góc bằng 45° có phải là tam giác cân hay không? Hãy tìm góc còn lại của tam giác này.

Xem đáp án » 13/07/2024 1,853

Câu 2:

Cho Hình 7, biết AB = AC và BE là tia phân giác của ABC^; CF là tia phân giác của ACB^. Chứng minh rằng:

a) ΔABE = ΔACF;

Media VietJack

Xem đáp án » 13/07/2024 1,694

Câu 3:

Trong Hình 6, tính góc B và góc C biết A^=138°. 

Media VietJack

Xem đáp án » 13/07/2024 930

Câu 4:

Cho tam giác MEF cân tại M có M^=80°.

a) Tính E^,  F^.

Xem đáp án » 13/07/2024 795

Câu 5:

b) Tam giác OEF cân.

Xem đáp án » 13/07/2024 722

Câu 6:

Cho tam giác MNP cân tại M. Kể tên các cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của tam giác cân đó.

Xem đáp án » 13/07/2024 705

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store