Câu hỏi:

12/07/2024 3,172

Cho hình chữ nhật ABCD, AB = 8, BC = 6. Điểm M nằm trong hình chữ nhật. Tìm giá trị nhỏ nhất của tổng: S=MA2+MB2+MC2+MD2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chữ nhật ABCD, AB = 8, BC = 6. Điểm M nằm trong hình chữ nhật. Tìm giá trị nhỏ nhất của tổng: .S = MA^2 + MB^2 + MC^2 +MD^2 (ảnh 1)

ABCD là hình chữ nhật nên AC=BD=82+62=10.

Ta đặt MA=x,MC=y.

Xét ba điểm M, A, C ta có: MA+MCAC 

do đó x+y10x+y2100 hay x2+y2+2xy100.                  (1)

Mặt khác, xy20 hay x2+y22xy0.                         (2)

Từ (1) và (2) suy ra 2x2+y2100

x2+y250.

Dấu ''='' xảy ra <=> M nằm giữa A và C và MA = MC <=> M là trung điểm của  AC.

Chứng minh tương tự, ta được: MB2+MD250 dấu ''='' xảy ra <=> M là trung điểm của BD.

Vậy MA2+MC2+MB2+MD2100.

Do đó giá trị nhỏ nhất của tổng S là 100 khi M là giao điểm của hai đường chéo AC và BD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trên cạnh AC lấy điểm D sao cho AD = AB.  (ảnh 1)

Vẽ DEBC,DFAH.

ΔHAB và ΔFDA có: H^=F^=90°; AB = AD

HAB^=FDA^  (cùng phụ với FAD^).

Do đó ΔHAB=ΔFDA (cạnh huyền-góc nhọn)

=> AH = FD                     (1)

Tứ giác FDEH có ba góc  vuông nên là hình chữ nhật

=> HE = FD                     (2)

Từ (1) và (2) suy ra: AH = HE

Ta có AM=EM=12BD.

ΔAHM=ΔEHMc.c.cAHM^=EHM^.

Do đó tia HM là tia phân giác của góc AHC

Lời giải

Cho hình bình hành ABCD. Biết AD = 1/2AC và góc BAC = 1/2 góc DAC. Chứng minh rằng hình bình hành ABCD là hình chữ nhật. (ảnh 1)

Gọi O là giao điểm của AC và BD, ta có OA = OC.

AD=12AC nên AD = AO

Vẽ AHOD,OKAB.

Xét ΔAOD cân tại A, AH là đường cao => AH cũng là đường trung tuyến, cũng là đường phân giác.

Do đó HO=HD và A1^=A2^.

BAC^=12DAC^ nên A3^=A2^=A1^.

ΔAOK=ΔAOH  (cạnh huyền, góc nhọn)

OK=OH=12ODOK=12OBB1^=30°.

Xét ΔABH vuông tại H có B1^=30° nên HAB^=60° suy ra DAB^=90°.

Hình bình hành ABCD có một góc vuông nên là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP