Câu hỏi:

12/07/2024 2,989

Cho tam giác đều ABC cạnh a. Trên các cạnh AB, AC lần lượt lấy các điểm D và E sao cho AD = CE. Tìm giá trị nhỏ nhất của độ dài DE.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác đều ABC cạnh a. Trên các cạnh AB, AC lần lượt lấy các điểm D và E sao cho AD = CE. Tìm giá trị nhỏ nhất của độ dài DE. (ảnh 1)

Vẽ DHBC,EKBC và DFEK

Tứ giác DFKH có 3 góc vuông nên là hình chữ nhật.

Suy ra DF = HK.

ΔHBD vuông tại H có B^=60° nên D1^=30°BH=12BD.

ΔKCE vuông tại K có C^=60° nên E^1=30°CK=12CE=12AD.

Ta có: DEDF=HK=BCBH+KC=BC12BD+12AD=BC12AB=a2.

Vậy giá trị nhỏ nhất của DE là a2 khi D và E lần lượt là trung điểm của AB và AC.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trên cạnh AC lấy điểm D sao cho AD = AB.  (ảnh 1)

Vẽ DEBC,DFAH.

ΔHAB và ΔFDA có: H^=F^=90°; AB = AD

HAB^=FDA^  (cùng phụ với FAD^).

Do đó ΔHAB=ΔFDA (cạnh huyền-góc nhọn)

=> AH = FD                     (1)

Tứ giác FDEH có ba góc  vuông nên là hình chữ nhật

=> HE = FD                     (2)

Từ (1) và (2) suy ra: AH = HE

Ta có AM=EM=12BD.

ΔAHM=ΔEHMc.c.cAHM^=EHM^.

Do đó tia HM là tia phân giác của góc AHC

Lời giải

Cho hình bình hành ABCD. Biết AD = 1/2AC và góc BAC = 1/2 góc DAC. Chứng minh rằng hình bình hành ABCD là hình chữ nhật. (ảnh 1)

Gọi O là giao điểm của AC và BD, ta có OA = OC.

AD=12AC nên AD = AO

Vẽ AHOD,OKAB.

Xét ΔAOD cân tại A, AH là đường cao => AH cũng là đường trung tuyến, cũng là đường phân giác.

Do đó HO=HD và A1^=A2^.

BAC^=12DAC^ nên A3^=A2^=A1^.

ΔAOK=ΔAOH  (cạnh huyền, góc nhọn)

OK=OH=12ODOK=12OBB1^=30°.

Xét ΔABH vuông tại H có B1^=30° nên HAB^=60° suy ra DAB^=90°.

Hình bình hành ABCD có một góc vuông nên là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay