Cho hình thoi ABCD có . Kẻ tại E, tại F, tại G, tại G, BE cắt DG tại M, BF cắt DH tại N. Chứng minh các góc của tứ giác BMDN bằng các góc của hình thoi ABCD.
Cho hình thoi ABCD có . Kẻ tại E, tại F, tại G, tại G, BE cắt DG tại M, BF cắt DH tại N. Chứng minh các góc của tứ giác BMDN bằng các góc của hình thoi ABCD.
Câu hỏi trong đề: Bài tập Toán 8 Chủ đề 14: Hình thoi có đáp án !!
Quảng cáo
Trả lời:


Ta có: AB // CD (vì ABCD là hình thoi)
mà
Mà (vì ABE vuông tại E)
Ta có: hay BN // DM
Chứng minh tương tự, ta có: hay BM // DN
=> Tứ giác BMDN là hình bình hành
=>
Ta có: (hai góc trong cùng phía)
Vậy các góc của tứ giác BMDN bằng các góc của tứ giác ABCD
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì ABCD là hình bình hành =>
Tứ giác AMCN có là hình bình hành (1)
Tứ giác AMND có là hình bình hành
=> AD // MN, mà (2)
Từ (1) và (2) => AMCN là hình thoi.
Lời giải

Gọi O là giao điểm của AK và BN.
Ta có ( vì cùng phụ với )
Ta có ABD vuông tại D nên
Suy ra ABO vuông tại O tại O.
AMN có AO là đường cao, đồng thời là đường phân giác nên AMN cân tại A
Do đó AO là đường trung trực của đoạn thẳng MN (2)
và O là trung điểm của MN (3)
BIK có BO là đường cao, đồng thời là đường phân giác nên BIK cân tại B
Do đó BO là đường trung trực của đoạn thẳng IK => IM = KM (4)
và O là trung điểm của IK (5)
Từ (2) và (4) suy ra tứ giác MINK có IM = KM = KN = IN
Do đó tứ giác MINK là hình thoi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.