Câu hỏi:

19/08/2025 3,012 Lưu

Cho hình bình hành ABCD có A^<90và AD = 2.AB . Kẻ CHAB có A^<90 Gọi M, N lần lượt là trung điểm của AD, BC. Chứng minh: BAD^=2.AHM^

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình bình hành  ABCD  góc A < 90 độ có và AD = 2.AB . Kẻ CH vuông AB  có góc A < 90 độ  Gọi M, N lần lượt là trung điểm của AD, BC. (ảnh 1)

Vì ABCD là hình bình hành => AD=BC , AB=CD=12AD=12BC

Vì M, N là trung điểm của AD, BC => MD=NC=12AD=12BC.

Tứ giác DMNC có DM=CN=12ABDM//CNDMNC là hình bình hành

Hình bình hành DMNC có CD=DM=12ADDMNC là hình thoi.

Gọi F là giao điểm của MN và CE.

DMNC là hình thoi => MN // CD.

Hình thang ADCEAE//DC có MA=MDMN//CDFC=FE

Ta có: MF//AEAECEMFCE

MEC có MF là đường cao và là đường trung tuyến => MEC cân tại M

=> MF là đường phân giác của EMC^EMF^=CMF^                    (1)

DMNC là hình thoi => MC là phân giác của NMD^CMF^=CMD^        (2)

Từ (1) và (2) => EMF^=CMF^=CMD^=12NMD^          (3)

Ta có: AEM^=EMF^ (vì AB // MN)                 (4)

Ta có: BAD^=NMD^ (hai góc đồng vị)            (5)

Từ (3), (4), (5) => BAD^=2.AHM^

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD có AD vuông AC. Gọi M, N theo thứ tự là trung điểm của AB, CD . Chứng minh tứ giác AMCN là hình thoi. (ảnh 1)

Vì ABCD  là hình bình hành => AB//CDAD//BC

Tứ giác AMCN có AM=CNAM//CNAMCN là hình bình hành (1)

Tứ giác AMND có AM=DNAM//DNAMND là hình bình hành

=> AD // MN, mà ADACMNAC (2)

Từ (1) và (2) => AMCN là hình thoi.

Lời giải

Cho ABC nhọn , đường cao tại AD, BE. Tia phân giác của góc DAC cắt BE, BC theo thứ tự ở I, K. Tia phân giác của góc EBC cắt AD, AC  (ảnh 1)

Gọi O là giao điểm của AK và BN.

Ta có CBE^=CAD^( vì cùng phụ với ACB^12CBE^=12CAD^

CAO^=DAO^=CBO^=EBO^

Ta có ABD vuông tại D nên DAB^+DBA^=900

DAB^+IBA^+IBO^+OBD^=900DAB^+IBA^+IBO^+OAD^=900                                (1)ABO^+OAB^=900

Suy ra ABO vuông tại O AKBN tại O.

AMN có AO là đường cao, đồng thời là đường phân giác nên AMN cân tại A

Do đó AO là đường trung trực của đoạn thẳng MN IM=INKM=KN(2)

và O là trung điểm của MN      (3)

BIK có BO là đường cao, đồng thời là đường phân giác nên BIK cân tại B

Do đó BO là đường trung trực của đoạn thẳng IK => IM = KM    (4)

và O là trung điểm của IK         (5)

Từ (2) và (4) suy ra tứ giác MINK có IM = KM = KN = IN

Do đó tứ giác MINK là hình thoi.

CAO^=DAO^=CBO^=EBO^

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP