Câu hỏi:

13/07/2024 346

c) Với điều kiện của ABC ở câu b, gọi H là trực tâm của ABC. Chứng minh EF, ID, MH đồng quy.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
c) Gọi O là giao điểm của EF và DI => OE = OF

Gọi K là trung điểm của AH

ABC cân tại A có BAC^=60°ΔABCđều

=> H là trọng tâm ABC => OH=12HA=KH

Ta có IK và OH lần lượt là đường trung bình của ΔAMH và ΔAID

=> IK // MH, OH // IK

H, M, O thẳng hàng. Do đó EF, ID, MH đồng quy tại O.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD có ADAC. Gọi M, N theo thứ tự là trung điểm của AB, CD . Chứng minh tứ giác AMCN là hình thoi.

Xem đáp án » 13/07/2024 19,079

Câu 2:

Cho hình thang ABCD (AB // CD) . Gọi M, N , P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Chứng minh: MNPQ là hình bình hành.

Xem đáp án » 13/07/2024 5,967

Câu 3:

Cho tam giác ABC cân tại A. Gọi D, E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh: tứ giác AEDF là hình thoi.

Xem đáp án » 13/07/2024 5,878

Câu 4:

Cho ABC nhọn , đường cao tại AD, BE. Tia phân giác của DAC^ cắt BE, BC theo thứ tự ở I, K.Tia phân giác của EBC^ cắt AD, AC theo thứ tự ở M, N. Chứng minh: MINK là hình thoi.

Xem đáp án » 13/07/2024 5,463

Câu 5:

Cho tam giác ABC cân tại A. Trên nửa mặt phẳng không chứa Acó bờ là đường thẳng chứa cạnh BC, vẽ tia Bx // AC và tia Cy // AB. Gọi D là giao điểm của hai tia Bx và Cy. Chứng minh: tứ giác ACDB là hình thoi.

Xem đáp án » 13/07/2024 4,467

Câu 6:

Cho ΔABC cân tại B. Đường thẳng qua C song song với AB cắt tia phân giác của ABC^  tại D. Chứng minh: tứ giác ABCD là hình thoi.

Xem đáp án » 12/07/2024 4,422

Câu 7:

Cho ABC cân tại B có đường cao BE. Trên tia đối của tia EB lấy điểm D sao cho ED = EB. Chứng minh: tứ giác ABCD là hình thoi.

Xem đáp án » 13/07/2024 3,511
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua