Câu hỏi:
13/07/2024 1,151Cho tứ giác ABCD có ABCD . Gọi M, N, P, Q lần lượt là trung điểm của BC, BD, AD, AC. Chứng minh rằng:
a) Tứ giác MNPQ là hình chữ nhật.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Trong tam giác ACD, PQ là đường trung bình, suy ra PQ // CD
Tương tự .
Từ đó ta có MN // PQ và NP // MQ
Suy ra MNPQ là hình bình hành.
Mặt khác, .
Vậy MNPQ là hình chữ nhật.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A (AB < AC) , trung tuyến AM . E, F lần lượt là trung điểm của AB, AC.
a) Chứng minh rằng AEMF là hình chữ nhật.
Câu 2:
Cho tam giác ABC vuông cân tại C, M là điểm bất kỳ trên cạnh AB . Vẽ tại E , tại F . Gọi D là trung điểm của AB . Chứng minh rằng:
a) Tứ giác CFME là hình chữ nhật.
Câu 3:
Câu 4:
Câu 5:
Cho hình chữ nhật ABCD . Tia phân giác góc cắt tia phân giác góc tại M , tia phân giác góc cắt tia phân giác góc tại N . Gọi E, F lần lượt là giao điểm của DM, CN với AB. Chứng minh rằng:
a) AM = DM = BN = CN = ME = NF
Câu 6:
Cho đoạn thẳng AG và điểm D nằm giữa hai điểm A và G. Trên cùng nửa mặt phẳng bờ AG vẽ các hình vuông ABCD, DEFG. Gọi M, N lần lượt là trung điểm của AG, EC. Gọi I, K lần lượt là tâm đối xứng của các hình vuông ABCD, DEFG.
a) Chứng minh: AE = CG và tại H.
Câu 7:
Cho tam giác nhọn ABC. Gọi H là trực tâm của tam giác, M là trung điểm của BC. Gọi D là điểm đối xứng của H qua M .
a. Chứng minh tứ giác BHCD là hình bình hành.
về câu hỏi!