Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) Xét AEC có: I là trung điểm của AC, N là trung điểm của EC
=> IN là đường trung bình của AEC
Xét AEG có: K là trung điểm của EG, M là trung điểm của AG
=> KM là đường trung bình của (ĐN)
Xét tứ giác MINK có:
Tứ giác MINK là hình bình hành (dhnb)
Tương tự ta cũng chứng minh được IM là đường trung bình của ACG
=> IM // CG; IM = mà KM = và AE = CG (cmt)
=> IM = KM mà tứ giác MINK là hình bình hành
Do đó tứ giác MINK là hình thoi.
Ta có ( Hai góc đồng vị)
Mà
Nên
Mà
Mà tứ giác MINK là hình thoi (cmt)
Vậy tứ giác MINK là hình vuông (đpcm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A (AB < AC) , trung tuyến AM . E, F lần lượt là trung điểm của AB, AC.
a) Chứng minh rằng AEMF là hình chữ nhật.
Câu 2:
Cho tam giác ABC vuông cân tại C, M là điểm bất kỳ trên cạnh AB . Vẽ tại E , tại F . Gọi D là trung điểm của AB . Chứng minh rằng:
a) Tứ giác CFME là hình chữ nhật.
Câu 3:
Câu 4:
Câu 5:
Cho hình chữ nhật ABCD . Tia phân giác góc cắt tia phân giác góc tại M , tia phân giác góc cắt tia phân giác góc tại N . Gọi E, F lần lượt là giao điểm của DM, CN với AB. Chứng minh rằng:
a) AM = DM = BN = CN = ME = NF
Câu 6:
Cho đoạn thẳng AG và điểm D nằm giữa hai điểm A và G. Trên cùng nửa mặt phẳng bờ AG vẽ các hình vuông ABCD, DEFG. Gọi M, N lần lượt là trung điểm của AG, EC. Gọi I, K lần lượt là tâm đối xứng của các hình vuông ABCD, DEFG.
a) Chứng minh: AE = CG và tại H.
Câu 7:
Cho hình bình hành ABCD có AB bằng đường chéo AC. Gọi O là trung điểm của BC và E là điểm đối xứng của A qua O. Đường thẳng vuông góc với AE tại E cắt AC tại F .
a) Chứng minh ABEC là hình thoi
về câu hỏi!