Câu hỏi:

13/07/2024 36,131

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BCAD, biết AB=CD=a, MN=a32.Tính góc giữa hai đường thẳng ABCD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và AD, biết AB = CD = a, MN = a căn bậc 2(3)/2 (ảnh 1)

Gọi I là trung điểm của AC.

Ta có IM//ABIN//CDAB,CD^=IM,IN^.

Đặt MIN^=α.

Xét tam giác IMN có IM=AB2=a2,IN=CD2=a2,MN=a32.

Theo định lí côsin, ta có:

cosα=IM2+IN2MN22IM.IN=a22+a22a3222.a2.a2=12<0MIN^=120o.

Vậy AB,CD^=60o.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn đáp án D

Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng BA' và B'D' bằng A. 45 độ B. 90 độ (ảnh 1)

BD//B'D'  nên góc giữa hai đường thẳng BA' B'D' bằng góc giữa hai đường thẳng BA'BD.

Ta có ABCD.A'B'C'D' là hình lập phương nên A'BD là tam giác đều. Khi đó góc giữa hai đường thẳng BA' BD bằng ABD^=60o.

Lời giải

Chọn đáp án C

Cho tứ diện ABCD có AB =  CD = 2a. Gọi M, N lần lượt là trung điểm AD và BC. Biết MN = a căn bậc 2(3) (ảnh 1)

Gọi P là trung điểm AC, ta có PM//CD  PN//AB  suy ra AB,CD^=PM,PN^.

Dễ thấy PM=PN=a.  Xét PMN ta có:

cosMPN^=PM2+PN2MN22PM.PN=a2+a23a22.a.a=12MPN^=120o.

Suy ra AB,CD^=180o120o=60o.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP