Câu hỏi:

30/10/2022 9,236 Lưu

Cho tứ diện OABCOA=OB=OC=a;OA,OB,OC vuông góc với nhau từng đôi một. Gọi I là trung điểm BC. Góc giữa hai đường thẳng ABOI bằng

A. 45°.

B. 30° .

C. 90°.

D. 60°.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án D

Cho tứ diện OABC có OA = OB = OC = a, OA, OB, OC vuông góc với nhau từng đôi một. Gọi I là trung (ảnh 1)

Vì tứ diện OABCOA=OB=OC=a;OA,OB,OC  vuông góc với nhau từng đôi một nên ta có thể dựng hình lập phương AMNP.OBDC (như hình vẽ) với I là trung điểm BC;I=ODBC.

Cạnh của hình lập phương trên bằng a nên AB=AN=NB=a2  vậy tam giác ABN đều.

Dễ thấy OI//AN  nên góc giữa hai đường thẳng ABOI bằng góc giữa ABAN bằng 60°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và AD, biết AB = CD = a, MN = a căn bậc 2(3)/2 (ảnh 1)

Gọi I là trung điểm của AC.

Ta có IM//ABIN//CDAB,CD^=IM,IN^.

Đặt MIN^=α.

Xét tam giác IMN có IM=AB2=a2,IN=CD2=a2,MN=a32.

Theo định lí côsin, ta có:

cosα=IM2+IN2MN22IM.IN=a22+a22a3222.a2.a2=12<0MIN^=120o.

Vậy AB,CD^=60o.

Lời giải

Chọn đáp án C

Cho tứ diện ABCD có AB =  CD = 2a. Gọi M, N lần lượt là trung điểm AD và BC. Biết MN = a căn bậc 2(3) (ảnh 1)

Gọi P là trung điểm AC, ta có PM//CD  PN//AB  suy ra AB,CD^=PM,PN^.

Dễ thấy PM=PN=a.  Xét PMN ta có:

cosMPN^=PM2+PN2MN22PM.PN=a2+a23a22.a.a=12MPN^=120o.

Suy ra AB,CD^=180o120o=60o.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP