Câu hỏi:

03/01/2023 176

Cho \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\cos }^2}x + \sin x.\cos x + 1}}{{{{\cos }^4}x + \sin x.{{\cos }^3}x}}} dx = a + b\ln 2 + c\ln \left( {1 + \sqrt 3 } \right)\), với \(a,b,c\) là các số hữu tỉ. Giá trị abc bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Ta có \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\cos }^2}x + \sin x.\cos x + 1}}{{{{\cos }^4}x + \sin x.{{\cos }^3}x}}dx} = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{2{{\cos }^2}x + \sin x.\cos x + {{\sin }^2}x}}{{{{\cos }^2}x\left( {{{\cos }^2}x + \sin x.\cos x} \right)}}dx} \)

\( = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{2 + \tan x + {{\tan }^2}x}}{{{{\cos }^2}x\left( {1 + \tan x} \right)}}dx = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{2 + \tan x + {{\tan }^2}x}}{{\left( {1 + \tan x} \right)}}} d\left( {\tan x} \right)} \)

\( = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\left( {\tan x + \frac{2}{{\left( {1 + \tan x} \right)}}} \right)d\left( {\tan x} \right) = \frac{{{{\tan }^2}x}}{2}} \left| {_{\scriptstyle\atop\scriptstyle\frac{\pi }{4}}^{\scriptstyle\frac{\pi }{3}\atop\scriptstyle}} \right. + 2\ln \left| {\tan x + 1} \right|_{\frac{\pi }{4}}^{\frac{\pi }{3}}\)

\( = 1 - 2\ln 2 + 2\ln \left( {\sqrt 3 + 1} \right).\) Suy ra \(a = 1,b = - 2,c = 2\) nên \(abc = - 4.\)

Chọn C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Khi vật dừng lại thì \(v\left( t \right) = 160 - 10t = 0 \Leftrightarrow t = 16\)

Do đó \(S = \int\limits_0^{16} {v\left( t \right)dt} = \int\limits_0^{16} {\left( {160 - 10t} \right)dt} \)

\( = \left( {160t - 5{t^2}} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle16\atop\scriptstyle}} \right. = 1280\left( m \right)\).

Chọn B.

Lời giải

Hướng dẫn giải

Đặt \(t = \frac{x}{2} \Rightarrow x = 2t \Rightarrow dx = 2dt.\)

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 4 \Rightarrow t = 2\end{array} \right..\) Do đó \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} = \int\limits_0^2 {4tf'\left( t \right)dt} = \int\limits_0^2 {4xf'\left( x \right)dx} .\)

Đặt \(\left\{ \begin{array}{l}u = 4x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 4dx\\v = f\left( x \right)\end{array} \right..\)

Suy ra

\(\int\limits_0^2 {4xf'\left( x \right)dx} = \left[ {4xf\left( x \right)} \right]\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_0^2 {4f\left( x \right)dx} = 8f\left( 2 \right) - 4\int\limits_0^2 {f\left( x \right)dx} = 8.16 - 4.4 = 112.\)

Chọn A.

Câu 3

Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 2 \right) = - \frac{1}{3}\) và \(f'\left( x \right) = x{\left[ {f\left( x \right)} \right]^2}\) với mọi \(x \in \mathbb{R}\). Giá trị \(f\left( 1 \right)\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay