Câu hỏi:
03/01/2023 561Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{e^x} + m,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 0\\2x\sqrt {3 + {x^2}} ,\,\,\,\,\,khi\,\,x < 0\end{array} \right.\) liên tục trên \(\mathbb{R}\).
Biết \(\int_{ - 1}^1 {f\left( x \right)dx} = ae + b\sqrt 3 + c\left( {a,b,c \in \mathbb{Q}} \right)\). Tổng \(T = a + b + 3c\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Do hàm số liên tục trên \(\mathbb{R}\) nên hàm số liên tục tại \(x = 0\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow 1 + m = 0 \Leftrightarrow m = - 1.\)
Ta có \(\int_{ - 1}^1 {f\left( x \right)} dx = \int_{ - 1}^0 {f\left( x \right)dx} + \int_0^1 {f\left( x \right)dx = {I_1} + {I_2}} \)
\({I_1} = \int_{ - 1}^0 {2x\sqrt {3 + {x^2}} dx} = \int_{ - 1}^0 {{{\left( {3 + {x^2}} \right)}^{\frac{1}{2}}}d\left( {3 + {x^2}} \right) = \frac{2}{3}\left( {3 + {x^2}} \right)\sqrt {3 + {x^2}} \left| {_{\scriptstyle\atop\scriptstyle - 1}^{\scriptstyle0\atop\scriptstyle}} \right. = 2\sqrt 3 - \frac{{16}}{3}.} \)
\({I_2} = \int_0^1 {\left( {{e^x} - 1} \right)dx} = \left( {{e^x} - x} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle1\atop\scriptstyle}} \right. = e - 2.\)
Suy ra \(\int_{ - 1}^1 {f\left( x \right)dx} = {I_1} + {I_2} = e + 2\sqrt 3 - \frac{{22}}{3}.\) Suy ra \(a = 1;b = 2;c = - \frac{{22}}{3}.\)
Vậy \(T = a + b + 3c = 1 + 2 - 22 = - 19.\)
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).
Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \) là
Câu 5:
Câu 6:
Một chiếc ô tô chuyển động với vận tốc \(v\left( t \right)\) \(\left( {m/s} \right)\), có gia tốc \(a\left( t \right) = v'\left( t \right) = \frac{3}{{2t + 1}}\left( {m/{s^2}} \right).\)
Vận tốc của ô tô sau 10 giây (làm tròn đến hàng đơn vị) là
Câu 7:
về câu hỏi!