Câu hỏi:
03/01/2023 122Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đặt \(u = \sqrt {x - 1} \Rightarrow x = {u^2} + 1\) nên \(dx = 2udu.\)
Đổi cận
x |
1 |
2 |
u |
0 |
1 |
Khi đó \(I = \int\limits_0^1 {\frac{{{u^2} + 1}}{{1 + u}}.2udu} = \int\limits_0^1 {\left( {2{u^2} - 2u + 4 - \frac{4}{{u + 1}}} \right)du} \)
\( = \left( {\frac{{2{u^3}}}{3} - {u^2} + 4u - 4\ln \left| {u + 1} \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle1\atop\scriptstyle}} \right. = \frac{{11}}{3} - 4\ln 2.\)
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).
Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \) là
Câu 5:
Câu 6:
Một chiếc ô tô chuyển động với vận tốc \(v\left( t \right)\) \(\left( {m/s} \right)\), có gia tốc \(a\left( t \right) = v'\left( t \right) = \frac{3}{{2t + 1}}\left( {m/{s^2}} \right).\)
Vận tốc của ô tô sau 10 giây (làm tròn đến hàng đơn vị) là
Câu 7:
về câu hỏi!