Câu hỏi:
03/01/2023 100Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đột biến lần 1: (Dạng 1)
Đặt \(u = {x^2} \Rightarrow xdx = \frac{1}{2}du.\)
Đổi cận
x |
0 |
1 |
u |
0 |
1 |
Suy ra \(I = \frac{1}{2}\int\limits_0^1 {\frac{1}{{{u^2} + u + 1}}} du = \frac{1}{2}\int\limits_0^1 {\frac{1}{{{{\left( {u + \frac{1}{2}} \right)}^2} + \frac{3}{4}}}du.} \)
Đổi biến lần 2: (Dạng 2)
Đặt \(u + \frac{1}{2} = \frac{{\sqrt 3 }}{2}\tan t.\) Ta có \(du = \frac{{\sqrt 3 }}{2}\left( {1 + {{\tan }^2}t} \right)dt\)
Đổi cận
x |
0 |
1 |
u |
\(\frac{\pi }{6}\) |
\(\frac{\pi }{3}\) |
Khi đó \(I = \frac{{\sqrt 3 }}{3}\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {dt} = \frac{{\sqrt 3 }}{3}\left( {\frac{\pi }{3} - \frac{\pi }{6}} \right) = \frac{{\pi \sqrt 3 }}{{18}}.\)
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).
Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \) là
Câu 5:
Câu 6:
Câu 7:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!