Câu hỏi:
03/01/2023 483Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx} = a\ln 2 + b\ln 3,\) với \(a,b\) là các số nguyên.
Giá trị của \(P = 2a + b\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx = \int\limits_0^{\frac{\pi }{2}} {\frac{1}{{\left( {\sin x + 1} \right)\left( {\sin x + 2} \right)}}d\left( {\sin x} \right)} } \)
\( = \int\limits_0^{\frac{\pi }{2}} {\left( {\frac{1}{{\sin x + 1}} - \frac{1}{{\sin x + 2}}} \right)d\left( {\sin x} \right) = \left( {\ln \left| {\sin x + 1} \right| - \ln \left| {\sin x + 2} \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{2}}} \right.} \)
\( = \ln 2 - \ln 1 - \left( {\ln 3 - \ln 2} \right) = 2\ln 2 - \ln 3\)
Suy ra \(a = 2,b = - 1 \Rightarrow 2a + b = 3.\)
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).
Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \) là
Câu 5:
Câu 6:
Một chiếc ô tô chuyển động với vận tốc \(v\left( t \right)\) \(\left( {m/s} \right)\), có gia tốc \(a\left( t \right) = v'\left( t \right) = \frac{3}{{2t + 1}}\left( {m/{s^2}} \right).\)
Vận tốc của ô tô sau 10 giây (làm tròn đến hàng đơn vị) là
Câu 7:
về câu hỏi!