Câu hỏi:
03/01/2023 387Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Phân tích \(\frac{{3\sin x - \cos x}}{{2\sin x + 3\cos x}} = \frac{{m\left( {2\sin x + 3\cos x} \right) + n\left( {2\cos x - 3\sin x} \right)}}{{2\sin x + 3\cos x}}\)
\( = \frac{{\left( {2m - 3n} \right)\sin x + \left( {3m + 2n} \right)\cos x}}{{2\sin x + 3\cos x}}\)
Đồng nhất hệ số ta có \(\left\{ \begin{array}{l}2m - 3n = 3\\3m + 2n = - 1\end{array} \right. \Leftrightarrow m = \frac{3}{{13}};n = - \frac{{11}}{{13}}\).
Suy ra \(\int\limits_0^{\frac{\pi }{2}} {\frac{{3\sin x - \cos x}}{{2\sin x + 3\cos x}}dx} = \int\limits_0^{\frac{\pi }{2}} {\frac{{\frac{3}{{13}}\left( {2\sin x + 3\cos x} \right) - \frac{{11}}{{13}}\left( {2\cos x - 3\sin x} \right)}}{{2\sin x + 3\cos x}}} dx.\)
\( = \int\limits_0^{\frac{\pi }{2}} {\left[ {\frac{3}{{13}} - \frac{{11}}{{13}}.\frac{{2\cos x - 3\sin x}}{{2\sin x + 3\cos x}}} \right]dx} = \frac{3}{{13}}\left( x \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{2}}} \right. - \frac{{11}}{{13}}\int\limits_0^{\frac{\pi }{2}} {\frac{{2\cos x - 3\sin x}}{{2\sin x + 3\cos x}}dx.} \)
\( = \frac{{3\pi }}{{26}} - \frac{{11}}{{13}}\int\limits_0^{\frac{\pi }{2}} {\frac{{d\left( {2\sin x + 3\cos x} \right)}}{{2\sin x + 3\cos x}}dx} = \frac{{3\pi }}{{26}} - \frac{{11}}{{13}}\ln \left| {2\sin x + 3\cos x} \right|\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{2}}} \right.\)
\( = \frac{{3\pi }}{{26}} - \frac{{11}}{{13}}\ln 2 + \frac{{11}}{{13}}\ln 3.\) Do đó \(\left\{ \begin{array}{l}b = \frac{{11}}{{13}}\\c = \frac{3}{{26}}\end{array} \right. \Rightarrow \frac{b}{c} = \frac{{11}}{{13}}.\frac{{26}}{3} = \frac{{22}}{3}\)
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).
Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \) là
Câu 5:
Câu 6:
Một chiếc ô tô chuyển động với vận tốc \(v\left( t \right)\) \(\left( {m/s} \right)\), có gia tốc \(a\left( t \right) = v'\left( t \right) = \frac{3}{{2t + 1}}\left( {m/{s^2}} \right).\)
Vận tốc của ô tô sau 10 giây (làm tròn đến hàng đơn vị) là
Câu 7:
về câu hỏi!