Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{3\sin x - \cos x}}{{2\sin x + 3\cos x}}dx = \frac{{ - 11}}{{13}}\ln 2 + b\ln 3 + c\pi ,\left( {b,c \in \mathbb{Q}} \right)} \). Giá trị của \(\frac{b}{c}\) là
Câu hỏi trong đề: 70 câu Chuyên đề Toán 12 Bài 2: Tích phân có đáp án !!
Quảng cáo
Trả lời:

Hướng dẫn giải
Phân tích \(\frac{{3\sin x - \cos x}}{{2\sin x + 3\cos x}} = \frac{{m\left( {2\sin x + 3\cos x} \right) + n\left( {2\cos x - 3\sin x} \right)}}{{2\sin x + 3\cos x}}\)
\( = \frac{{\left( {2m - 3n} \right)\sin x + \left( {3m + 2n} \right)\cos x}}{{2\sin x + 3\cos x}}\)
Đồng nhất hệ số ta có \(\left\{ \begin{array}{l}2m - 3n = 3\\3m + 2n = - 1\end{array} \right. \Leftrightarrow m = \frac{3}{{13}};n = - \frac{{11}}{{13}}\).
Suy ra \(\int\limits_0^{\frac{\pi }{2}} {\frac{{3\sin x - \cos x}}{{2\sin x + 3\cos x}}dx} = \int\limits_0^{\frac{\pi }{2}} {\frac{{\frac{3}{{13}}\left( {2\sin x + 3\cos x} \right) - \frac{{11}}{{13}}\left( {2\cos x - 3\sin x} \right)}}{{2\sin x + 3\cos x}}} dx.\)
\( = \int\limits_0^{\frac{\pi }{2}} {\left[ {\frac{3}{{13}} - \frac{{11}}{{13}}.\frac{{2\cos x - 3\sin x}}{{2\sin x + 3\cos x}}} \right]dx} = \frac{3}{{13}}\left( x \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{2}}} \right. - \frac{{11}}{{13}}\int\limits_0^{\frac{\pi }{2}} {\frac{{2\cos x - 3\sin x}}{{2\sin x + 3\cos x}}dx.} \)
\( = \frac{{3\pi }}{{26}} - \frac{{11}}{{13}}\int\limits_0^{\frac{\pi }{2}} {\frac{{d\left( {2\sin x + 3\cos x} \right)}}{{2\sin x + 3\cos x}}dx} = \frac{{3\pi }}{{26}} - \frac{{11}}{{13}}\ln \left| {2\sin x + 3\cos x} \right|\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{2}}} \right.\)
\( = \frac{{3\pi }}{{26}} - \frac{{11}}{{13}}\ln 2 + \frac{{11}}{{13}}\ln 3.\) Do đó \(\left\{ \begin{array}{l}b = \frac{{11}}{{13}}\\c = \frac{3}{{26}}\end{array} \right. \Rightarrow \frac{b}{c} = \frac{{11}}{{13}}.\frac{{26}}{3} = \frac{{22}}{3}\)
Chọn A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Khi vật dừng lại thì \(v\left( t \right) = 160 - 10t = 0 \Leftrightarrow t = 16\)
Do đó \(S = \int\limits_0^{16} {v\left( t \right)dt} = \int\limits_0^{16} {\left( {160 - 10t} \right)dt} \)
\( = \left( {160t - 5{t^2}} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle16\atop\scriptstyle}} \right. = 1280\left( m \right)\).
Chọn B.Lời giải
Hướng dẫn giải
Đặt \(t = \frac{x}{2} \Rightarrow x = 2t \Rightarrow dx = 2dt.\)
Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 4 \Rightarrow t = 2\end{array} \right..\) Do đó \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} = \int\limits_0^2 {4tf'\left( t \right)dt} = \int\limits_0^2 {4xf'\left( x \right)dx} .\)
Đặt \(\left\{ \begin{array}{l}u = 4x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 4dx\\v = f\left( x \right)\end{array} \right..\)
Suy ra
\(\int\limits_0^2 {4xf'\left( x \right)dx} = \left[ {4xf\left( x \right)} \right]\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_0^2 {4f\left( x \right)dx} = 8f\left( 2 \right) - 4\int\limits_0^2 {f\left( x \right)dx} = 8.16 - 4.4 = 112.\)
Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.