Câu hỏi:

03/01/2023 119

Cho \(\int\limits_{\frac{1}{2}}^1 {\sqrt {\frac{x}{{{x^3} + 1}}} dx = \frac{1}{a}\ln \left( {\frac{a}{b} + \sqrt b } \right)} \), với \(a,b\) là các số nguyên tố. Giá trị của biểu thức \(P = 2\left( {a + b} \right)\) bằng

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Biến đổi \(I = \int\limits_{\frac{1}{2}}^1 {\sqrt {\frac{x}{{{x^3} + 1}}} dx = \int\limits_{\frac{1}{2}}^1 {\sqrt {\frac{x}{{{x^3}\left( {1 + \frac{1}{{{x^3}}}} \right)}}dx} = \int\limits_{\frac{1}{2}}^1 {\frac{1}{{x.\sqrt {1 + \frac{1}{{{x^3}}}} }}dx} = \int\limits_{\frac{1}{2}}^1 {\frac{{{x^3}}}{{\sqrt {1 + \frac{1}{{{x^3}}}} }}.\frac{1}{{{x^4}}}dx} } } \).

Đặt \(u = \sqrt {1 + \frac{1}{{{x^3}}}} \Rightarrow {u^2} = 1 + \frac{1}{{{x^3}}} \Rightarrow 2udu = - \frac{3}{{{x^4}}}dx\)\({x^3} = \frac{1}{{{u^2} - 1}}.\)

Đổi cận \(x = \frac{1}{2} \Rightarrow u = 3;x = 1 \Rightarrow u = \sqrt 2 .\)

Ta có \(I = \int\limits_{\sqrt 2 }^3 {\frac{{\frac{{2udu}}{3}}}{{\left( {{u^2} - 1} \right).u}}} = \frac{2}{3}\int\limits_{\sqrt 2 }^3 {\frac{{du}}{{{u^2} - 1}}} = \frac{1}{3}\ln \left| {\frac{{u - 1}}{{u + 1}}} \right|\left| {_{\scriptstyle\atop\scriptstyle\sqrt 2 }^{\scriptstyle3\atop\scriptstyle}} \right. = \frac{1}{3}\ln \left( {\frac{3}{2} + \sqrt 2 } \right).\)

Suy ra \(a = 3,b = 2.\) Vậy \(P = 2\left( {a + b} \right) = 10.\)

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(f\left( x \right)\) liên tục, có đạo hàm trên \(\mathbb{R}\), \(f\left( 2 \right) = 16\) và \(\int\limits_0^2 {f\left( x \right)dx} = 4.\) Tích phân \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} \) bằng

Xem đáp án » 03/01/2023 11,772

Câu 2:

Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 2 \right) = - \frac{1}{3}\) và \(f'\left( x \right) = x{\left[ {f\left( x \right)} \right]^2}\) với mọi \(x \in \mathbb{R}\). Giá trị \(f\left( 1 \right)\) bằng

Xem đáp án » 03/01/2023 6,915

Câu 3:

Biết \(\int\limits_1^2 {{{\left( {x + 1} \right)}^2}{e^{x - \frac{1}{x}}}dx} = m{e^{\frac{p}{q}}} - n,\) trong đó \(m,n,p,q\) là các số nguyên dương và \(\frac{p}{q}\) là phân số tối giản. Giá trị của \(T = m + n + p + q\) là

Xem đáp án » 03/01/2023 6,019

Câu 4:

Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\)\(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).

Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \)

Xem đáp án » 03/01/2023 5,854

Câu 5:

Cho \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx = 5} \) . Giá trị của \(I = \int\limits_0^{\frac{\pi }{2}} {\left[ {f\left( x \right) + 2\sin x} \right]dx} \) là bao nhiêu?

Xem đáp án » 03/01/2023 4,529

Câu 6:

Cho \(I = \int\limits_0^1 {x{e^{2x}}dx = a.{e^2} + b} \) với \(a,b \in \mathbb{Q}\). Giá trị của tổng \(a + b\) là

Xem đáp án » 03/01/2023 4,478

Câu 7:

Một vật chuyển động chậm dần đều với vận tốc \(v\left( t \right) = 160 - 10t\left( {m/s} \right)\). Quãng đường mà vật chuyển động từ thời điểm \(t = 0\left( s \right)\) đến thời điểm mà vật dừng lại là

Xem đáp án » 04/01/2023 3,652

Bình luận


Bình luận