Câu hỏi:
03/01/2023 101Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Biến đổi \(I = \int\limits_{\frac{1}{2}}^1 {\sqrt {\frac{x}{{{x^3} + 1}}} dx = \int\limits_{\frac{1}{2}}^1 {\sqrt {\frac{x}{{{x^3}\left( {1 + \frac{1}{{{x^3}}}} \right)}}dx} = \int\limits_{\frac{1}{2}}^1 {\frac{1}{{x.\sqrt {1 + \frac{1}{{{x^3}}}} }}dx} = \int\limits_{\frac{1}{2}}^1 {\frac{{{x^3}}}{{\sqrt {1 + \frac{1}{{{x^3}}}} }}.\frac{1}{{{x^4}}}dx} } } \).
Đặt \(u = \sqrt {1 + \frac{1}{{{x^3}}}} \Rightarrow {u^2} = 1 + \frac{1}{{{x^3}}} \Rightarrow 2udu = - \frac{3}{{{x^4}}}dx\) và \({x^3} = \frac{1}{{{u^2} - 1}}.\)
Đổi cận \(x = \frac{1}{2} \Rightarrow u = 3;x = 1 \Rightarrow u = \sqrt 2 .\)
Ta có \(I = \int\limits_{\sqrt 2 }^3 {\frac{{\frac{{2udu}}{3}}}{{\left( {{u^2} - 1} \right).u}}} = \frac{2}{3}\int\limits_{\sqrt 2 }^3 {\frac{{du}}{{{u^2} - 1}}} = \frac{1}{3}\ln \left| {\frac{{u - 1}}{{u + 1}}} \right|\left| {_{\scriptstyle\atop\scriptstyle\sqrt 2 }^{\scriptstyle3\atop\scriptstyle}} \right. = \frac{1}{3}\ln \left( {\frac{3}{2} + \sqrt 2 } \right).\)
Suy ra \(a = 3,b = 2.\) Vậy \(P = 2\left( {a + b} \right) = 10.\)
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).
Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \) là
Câu 5:
Câu 6:
Một chiếc ô tô chuyển động với vận tốc \(v\left( t \right)\) \(\left( {m/s} \right)\), có gia tốc \(a\left( t \right) = v'\left( t \right) = \frac{3}{{2t + 1}}\left( {m/{s^2}} \right).\)
Vận tốc của ô tô sau 10 giây (làm tròn đến hàng đơn vị) là
Câu 7:
về câu hỏi!