Câu hỏi:

03/01/2023 845

Biết \(\int\limits_0^{\frac{\pi }{4}} {\frac{x}{{1 + \cos 2x}}dx = a\pi + b\ln 2,} \) với \(a,b\) là các số hũu tỉ.

Giá trị của \(T = 16a - 8b\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đặt \(A = \int\limits_0^{\frac{\pi }{4}} {\frac{x}{{1 + \cos 2x}}dx} = \int\limits_0^{\frac{\pi }{4}} {\frac{x}{{2{{\cos }^2}x}}} dx = \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\frac{x}{{{{\cos }^2}x}}dx} .\)

Đặt \(\left\{ \begin{array}{l}u = x \Rightarrow du = dx\\dv = \frac{1}{{{{\cos }^2}x}}dx \Rightarrow v = \tan x\end{array} \right.\)

Khi đó

\(A = \frac{1}{2}\left[ {x\tan x\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{4}}} \right. - \int\limits_0^{\frac{\pi }{4}} {\tan xdx} } \right] = \frac{1}{2}\left[ {\left( {x\tan x + \ln \left| {\cos x} \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{4}}} \right.} \right]\)

\( = \frac{1}{2}\left( {\frac{\pi }{4} + \ln \frac{{\sqrt 2 }}{2}} \right) = \frac{1}{2}\left( {\frac{\pi }{4} - \frac{1}{2}\ln 2} \right) = \frac{\pi }{8} - \frac{1}{4}\ln 2.\)

Vậy \(a = \frac{1}{8},b = \frac{{ - 1}}{4}\) do đó \(16a - 8b = 2 + 2 = 4.\)

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Khi vật dừng lại thì \(v\left( t \right) = 160 - 10t = 0 \Leftrightarrow t = 16\)

Do đó \(S = \int\limits_0^{16} {v\left( t \right)dt} = \int\limits_0^{16} {\left( {160 - 10t} \right)dt} \)

\( = \left( {160t - 5{t^2}} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle16\atop\scriptstyle}} \right. = 1280\left( m \right)\).

Chọn B.

Lời giải

Hướng dẫn giải

Đặt \(t = \frac{x}{2} \Rightarrow x = 2t \Rightarrow dx = 2dt.\)

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 4 \Rightarrow t = 2\end{array} \right..\) Do đó \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} = \int\limits_0^2 {4tf'\left( t \right)dt} = \int\limits_0^2 {4xf'\left( x \right)dx} .\)

Đặt \(\left\{ \begin{array}{l}u = 4x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 4dx\\v = f\left( x \right)\end{array} \right..\)

Suy ra

\(\int\limits_0^2 {4xf'\left( x \right)dx} = \left[ {4xf\left( x \right)} \right]\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_0^2 {4f\left( x \right)dx} = 8f\left( 2 \right) - 4\int\limits_0^2 {f\left( x \right)dx} = 8.16 - 4.4 = 112.\)

Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP