Câu hỏi:

03/01/2023 642

Cho \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = a\ln 3 + b\ln 2 + c\pi \) với \(a,b,c\) là các số hữu tỉ.

Giá trị của abc bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {\sin x + 2\cos x} \right)\\dv = \frac{{dx}}{{{{\cos }^2}x}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{{\cos x - 2\sin x}}{{\sin x + 2\cos x}}dx\\v = \tan x + 2\end{array} \right..\)

Khi đó

\(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = \left( {\tan x + 2} \right)\ln \left( {\sin x + 2\cos x} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{4}}} \right. - \int\limits_0^{\frac{\pi }{4}} {\frac{{\cos x - 2\sin x}}{{\cos x}}dx} \)

                                    \( = 3\ln \left( {\frac{{3\sqrt 2 }}{2}} \right) - 2\ln 2 - \int\limits_0^{\frac{\pi }{4}} {\left( {1 - 2\tan x} \right)} dx\)

                                    \( = 3\ln 3 - \frac{7}{2}\ln 2 - \left( {x + 2\ln \left| {\cos x} \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{4}}} \right.\)

                                    \( = 3\ln 3 - \frac{7}{2}\ln 2 - \frac{\pi }{4} - 2\ln \frac{{\sqrt 2 }}{2} = 3\ln 3 - \frac{5}{2}\ln 2 - \frac{\pi }{4}.\)

Suy ra \(a = 3,b = - \frac{5}{2},c = - \frac{1}{4}.\) Vậy \(abc = 18.\)

Chọn A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Khi vật dừng lại thì \(v\left( t \right) = 160 - 10t = 0 \Leftrightarrow t = 16\)

Do đó \(S = \int\limits_0^{16} {v\left( t \right)dt} = \int\limits_0^{16} {\left( {160 - 10t} \right)dt} \)

\( = \left( {160t - 5{t^2}} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle16\atop\scriptstyle}} \right. = 1280\left( m \right)\).

Chọn B.

Lời giải

Hướng dẫn giải

Đặt \(t = \frac{x}{2} \Rightarrow x = 2t \Rightarrow dx = 2dt.\)

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 4 \Rightarrow t = 2\end{array} \right..\) Do đó \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} = \int\limits_0^2 {4tf'\left( t \right)dt} = \int\limits_0^2 {4xf'\left( x \right)dx} .\)

Đặt \(\left\{ \begin{array}{l}u = 4x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 4dx\\v = f\left( x \right)\end{array} \right..\)

Suy ra

\(\int\limits_0^2 {4xf'\left( x \right)dx} = \left[ {4xf\left( x \right)} \right]\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_0^2 {4f\left( x \right)dx} = 8f\left( 2 \right) - 4\int\limits_0^2 {f\left( x \right)dx} = 8.16 - 4.4 = 112.\)

Chọn A.

Câu 3

Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 2 \right) = - \frac{1}{3}\) và \(f'\left( x \right) = x{\left[ {f\left( x \right)} \right]^2}\) với mọi \(x \in \mathbb{R}\). Giá trị \(f\left( 1 \right)\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay