Câu hỏi:
03/01/2023 2,056Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 6;6} \right]\).
Biết rằng \(\int\limits_{ - 1}^2 {f\left( x \right)dx = 8} \) và \(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3.} \)
Tính \(\int\limits_{ - 1}^6 {f\left( x \right)dx} .\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên đoạn \(\left[ { - 6;6} \right]\) ta có
\(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3} \Leftrightarrow \int\limits_1^3 {f\left( {2x} \right)dx} = 3\)
\( \Leftrightarrow \frac{1}{2}F\left( {2x} \right)\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle3\atop\scriptstyle} = 3.} \right.\)
Do đó \(F\left( 6 \right) - F\left( 2 \right) = 6\) hay \(\int\limits_2^6 {f\left( x \right)dx = 6.} \)
Vậy \(I = \int\limits_{ - 1}^6 {f\left( x \right)dx} = \int\limits_{ - 1}^2 {f\left( x \right)dx} + \int\limits_2^6 {f\left( x \right)dx = 14} .\)
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).
Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \) là
Câu 5:
Câu 6:
Một chiếc ô tô chuyển động với vận tốc \(v\left( t \right)\) \(\left( {m/s} \right)\), có gia tốc \(a\left( t \right) = v'\left( t \right) = \frac{3}{{2t + 1}}\left( {m/{s^2}} \right).\)
Vận tốc của ô tô sau 10 giây (làm tròn đến hàng đơn vị) là
Câu 7:
về câu hỏi!