Câu hỏi:
03/01/2023 147Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = {x^2}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \frac{{{x^3}}}{3}\end{array} \right.\)
Ta có \(\int\limits_0^1 {{x^2}f\left( x \right)dx} = \frac{{{x^3}f\left( x \right)}}{3}\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle1\atop\scriptstyle}} \right. - \frac{1}{3}\int\limits_0^1 {{x^3}f'\left( x \right)dx} \)
\( \Rightarrow - \frac{1}{3}\int\limits_0^1 {{x^3}.f'\left( x \right)} dx = \frac{1}{3} \Rightarrow \int\limits_0^1 {{x^3}.f'\left( x \right)d{\rm{x}} = - 1.} \)
Cách 1: Ta có \(\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx = 7} \) (1).
\(\int\limits_0^1 {{x^6}dx = \frac{{{x^7}}}{7}\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle1\atop\scriptstyle}} \right. = \frac{1}{7} \Rightarrow \int\limits_0^1 {49{x^6}dx} = \frac{1}{7}.49 = 7} \) (2).
\(\int\limits_0^1 {{x^3}.f'\left( x \right)dx = - 1 \Rightarrow \int\limits_0^1 {14{x^3}.f'\left( x \right)dx} = - 14} \) (3).
Cộng hai vế (1), (2) và (3) suy ra
\(\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx + \int\limits_0^1 {49{x^6}dx} + \int\limits_0^1 {14{x^3}.f'\left( x \right)dx = 0} } \)
\( \Rightarrow \int\limits_0^1 {{{\left[ {f\left( x \right) + 7{x^3}} \right]}^2}dx = 0.} \)
Do \({\left[ {f'\left( x \right) + 7{x^3}} \right]^2} \ge 0 \Rightarrow \int\limits_0^1 {{{\left[ {f'\left( x \right) + 7{x^3}} \right]}^2}} dx \ge 0\). Mà \(\int\limits_0^1 {{{\left[ {f'\left( x \right) + 7{x^3}} \right]}^2}} dx = 0 \Rightarrow f'\left( x \right) = - 7{x^3}.\)
\(f\left( x \right) = - \frac{{7{x^4}}}{4} + C.\)
Mà \(f\left( 1 \right) = 0 \Rightarrow - \frac{7}{4} + C = 0 \Rightarrow C = \frac{7}{4}.\)
Do đó \(f\left( x \right) = - \frac{{7{x^4}}}{4} + \frac{7}{4}.\)
Vậy \(\int\limits_0^1 {f\left( x \right)dx} = \int\limits_0^1 {\left( { - \frac{{7{x^4}}}{4} + \frac{7}{4}} \right)dx = \frac{7}{5}.} \)
Cách 2: Tương tự như trên ta có \(\int\limits_0^1 {{x^3}.f'\left( x \right)dx = - 1} \)
Áp dụng BĐT Cauchy-Schwarz, ta có
\(7 = 7{\left( {\int\limits_0^1 {{x^3}f'\left( x \right)dx} } \right)^2} \le 7\left( {\int\limits_0^1 {{{\left( {{x^3}} \right)}^2}dx} } \right).\left( {\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx} } \right)\)
\( \Leftrightarrow 7 \le 7.\frac{1}{7}.\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx = \int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}dx.} } \)
Dấu bằng xảy ra khi và chỉ khi \(f'\left( x \right) = a{x^3},\) với \(a \in \mathbb{R}\).
Ta có \(\int\limits_0^1 {{x^3}.f'\left( x \right)dx = - 1} \Rightarrow \int\limits_0^1 {{x^3}.a{x^3}dx} = - 1 \Rightarrow a = - 7.\)
Suy ra \(f'\left( x \right) = - 7{x^3} \Rightarrow f\left( x \right) = - \frac{{7{x^4}}}{4} + C\), mà \(f\left( 1 \right) = 0\) nên \(C = \frac{7}{4}.\)
Do đó \(f\left( x \right) = \frac{7}{4}\left( {1 - {x^4}} \right),\forall x \in \left[ {0;1} \right]\).
Vậy \(\int\limits_0^1 {f\left( x \right)dx} = \int\limits_0^1 {\left( { - \frac{{7{x^4}}}{4} + \frac{7}{4}} \right)dx = \frac{7}{5}.} \)
Chọn A.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).
Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \) là
Câu 5:
Câu 6:
Một chiếc ô tô chuyển động với vận tốc \(v\left( t \right)\) \(\left( {m/s} \right)\), có gia tốc \(a\left( t \right) = v'\left( t \right) = \frac{3}{{2t + 1}}\left( {m/{s^2}} \right).\)
Vận tốc của ô tô sau 10 giây (làm tròn đến hàng đơn vị) là
Câu 7:
về câu hỏi!