Câu hỏi:
04/01/2023 355Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có \(f\left( x \right) + f'\left( x \right) = \sin x\) nên \({e^x}f\left( x \right) + {e^x}f'\left( x \right) = {e^x}.\sin x,\forall x \in \mathbb{R}.\)
\( \Leftrightarrow {\left[ {{e^x}f\left( x \right)} \right]^\prime } = {e^x}.\sin x\) hay \(\int\limits_0^\pi {{{\left[ {{e^x}f\left( x \right)} \right]}^\prime }} dx = \int\limits_0^\pi {{e^x}.\sin x} dx\)
\( \Leftrightarrow \left[ {{e^x}f\left( x \right)} \right]\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle\pi \atop\scriptstyle}} \right. = \frac{1}{2}\left[ {{e^x}\left( {\sin x - \cos x} \right)} \right]\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle\pi \atop\scriptstyle}} \right. \Leftrightarrow {e^\pi }f\left( \pi \right) - f\left( 0 \right) = \frac{1}{2}\left( {{e^\pi } + 1} \right)\)
\( \Leftrightarrow {e^\pi }f\left( \pi \right) = \frac{{{e^\pi } + 3}}{2}.\)
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).
Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \) là
Câu 5:
Câu 6:
Một chiếc ô tô chuyển động với vận tốc \(v\left( t \right)\) \(\left( {m/s} \right)\), có gia tốc \(a\left( t \right) = v'\left( t \right) = \frac{3}{{2t + 1}}\left( {m/{s^2}} \right).\)
Vận tốc của ô tô sau 10 giây (làm tròn đến hàng đơn vị) là
Câu 7:
về câu hỏi!