Câu hỏi:
04/01/2023 513Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Hàm vận tốc \(v\left( t \right) = \int {a\left( t \right)dt = \int {\left( {3t + {t^2}} \right)dt = \frac{{3{t^2}}}{2} + \frac{{{t^3}}}{3}} + C.} \)
Lấy mốc thời gian lúc tăng tốc \( \Rightarrow v\left( 0 \right) = 10 \Rightarrow C = 10.\)
Ta được \(v\left( t \right) = \frac{{3{t^2}}}{2} + \frac{{{t^3}}}{3} + 10.\)
Sau 10 giây, quãng đường vật đi được là
\(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} + \frac{{{t^3}}}{3} + 10} \right)} dt = \left( {\frac{{{t^3}}}{2} + \frac{{{t^4}}}{{12}} + 10t} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle10\atop\scriptstyle}} \right. = \frac{{4300}}{3}\left( m \right)\)
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(f\left( x \right)\) là hàm số chẵn, \(g\left( x \right)\) là hàm số lẻ. Biết \(\int\limits_0^1 {f\left( x \right)dx = 5;} \int\limits_0^1 {g\left( x \right)dx = 7} \).
Giá trị của \(A = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} \) là
Câu 5:
Câu 6:
Một chiếc ô tô chuyển động với vận tốc \(v\left( t \right)\) \(\left( {m/s} \right)\), có gia tốc \(a\left( t \right) = v'\left( t \right) = \frac{3}{{2t + 1}}\left( {m/{s^2}} \right).\)
Vận tốc của ô tô sau 10 giây (làm tròn đến hàng đơn vị) là
Câu 7:
về câu hỏi!