Câu hỏi:

04/01/2023 2,023

Một vật chuyển động với vận tốc 10 m/s thì tăng tốc với gia tốc \(a\left( t \right) = 3t + {t^2}\). Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Hàm vận tốc \(v\left( t \right) = \int {a\left( t \right)dt = \int {\left( {3t + {t^2}} \right)dt = \frac{{3{t^2}}}{2} + \frac{{{t^3}}}{3}} + C.} \)

Lấy mốc thời gian lúc tăng tốc \( \Rightarrow v\left( 0 \right) = 10 \Rightarrow C = 10.\)

Ta được \(v\left( t \right) = \frac{{3{t^2}}}{2} + \frac{{{t^3}}}{3} + 10.\)

Sau 10 giây, quãng đường vật đi được là

\(S = \int\limits_0^{10} {\left( {\frac{{3{t^2}}}{2} + \frac{{{t^3}}}{3} + 10} \right)} dt = \left( {\frac{{{t^3}}}{2} + \frac{{{t^4}}}{{12}} + 10t} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle10\atop\scriptstyle}} \right. = \frac{{4300}}{3}\left( m \right)\)

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Khi vật dừng lại thì \(v\left( t \right) = 160 - 10t = 0 \Leftrightarrow t = 16\)

Do đó \(S = \int\limits_0^{16} {v\left( t \right)dt} = \int\limits_0^{16} {\left( {160 - 10t} \right)dt} \)

\( = \left( {160t - 5{t^2}} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle16\atop\scriptstyle}} \right. = 1280\left( m \right)\).

Chọn B.

Lời giải

Hướng dẫn giải

Đặt \(t = \frac{x}{2} \Rightarrow x = 2t \Rightarrow dx = 2dt.\)

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 4 \Rightarrow t = 2\end{array} \right..\) Do đó \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} = \int\limits_0^2 {4tf'\left( t \right)dt} = \int\limits_0^2 {4xf'\left( x \right)dx} .\)

Đặt \(\left\{ \begin{array}{l}u = 4x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 4dx\\v = f\left( x \right)\end{array} \right..\)

Suy ra

\(\int\limits_0^2 {4xf'\left( x \right)dx} = \left[ {4xf\left( x \right)} \right]\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_0^2 {4f\left( x \right)dx} = 8f\left( 2 \right) - 4\int\limits_0^2 {f\left( x \right)dx} = 8.16 - 4.4 = 112.\)

Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP