Câu hỏi:

13/01/2023 3,583 Lưu

Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh bằng 2, hai mặt phẳng (ABD) và (ACD) vuông góc với nhau. Bán kính mặt cầu ngoại tiếp tứ diện ABCD bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chọn B
Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh bằng 2, hai mặt phẳng (ABD) và (ACD) vuông góc với nhau. (ảnh 1)

Ta có ABC, BCD đều cạnh bằng 2 nên AC=CD=2ΔACDcân tại C.

Gọi I là trung điểm ADCIAD.

Lại có ACDADBACDADB=ADICADCIABD

CIIBdoIBABD1

Ta có ΔACD=ΔABDc.c.cCI=IB    2.

Từ (1) và (2) ta có ACB vuông cân tại ICB=IB2IB=CB2=22=2=IC.

DIB vuông tại IID=BD2IB2=2AD=2ID=22.

Xét ADB có AB=DB=2; AD=22ΔABD vuông tại B.

ABD^=90oACD^=90o.

Suy ra mặt cầu ngoại tiếp tứ diện ABCD có đường kính là AD nên bán kính là R=ID=2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B
Cho khối chóp đều S.ABCD có tất cả các cạnh đều bằng a căn bậc hai 3. Thể tích V của khối cầu ngoại tiếp hình chóp là (ảnh 1)

Vì S.ABCD là hình chóp đều nên SOABCD.

Ta có OD=12BD=12.a6=a62,

SO=SD2OD2=a62.

Vậy OS=OA=OD=OB=OC, nên O là tâm mặt cầu ngoại tiếp S.ABCD.                                          

Vậy thể tích khối cầu cần tìm là V=43π.SO3=πa36 (đvtt)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP