Câu hỏi:

26/01/2023 1,543

Biết đồ thị hàm số y=2mnx2+mx+1x2+mx+n6  nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m+n  bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Điều kiện x2+mx+n60

Phương trình đường tiệm cận ngang của đồ thị hàm số là y=2mn

           2mn=0     (1)

Đặt fx=(2mn)x2+mx+1  và gx=x2+mx+n6

Nhận thấy f00  với mọi m, n nên đồ thị nhận trục tung x=0  là tiệm cận đứng thì g0=0n6=0n=6 . Kết hợp với (1) suy ra m=3.

Vậy m+n=9

Chọn B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Điều kiện x1;x2 .

limx±y=1  nên đồ thị luôn có một đường tiệm cận ngang y=1  với mọi m.

Ta có x23x+2x=1x=2 .

Xét fx=x2+m . Để đồ thị hàm số có đúng hai đường tiệm cận thì fx  phải nhận x=1 hoặc x=2 là nghiệm hay f1=0f2=0m+1=0m+4=0m=1m=4 .

·    Với m=1 , ta có hàm số y=x21x23x+2=x+1x2  nên đồ thị có hai đường tiệm cận là x=2;y=1  (thỏa mãn).

·    Với m=4 , ta có hàm số y=x24x23x+2=x+2x1  nên đồ thị có hai đường tiệm cận là  x=1;y=1(thỏa mãn).

Vậy S=1;4  nên tổng các giá trị m bằng -5.

Chọn A.

Lời giải

Hướng dẫn giải

Dựa vào đồ thị, ta suy ra tiệm cận đứng và tiệm cận ngang của đồ thị lần lượt là các đường thẳng x=1,  y=2 .

Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP