Câu hỏi:

27/01/2023 4,262 Lưu

Cho hàm số bậc ba fx=ax3+bx2+cx+d  có đồ thị như hình vẽ dưới đây.

Cho hàm số bậc ba  f(x)= ax^3+bx^2+cx+d có đồ thị như hình vẽ dưới đây. Đặt g(x)= x^2-x/ f^2(x)-2f(x) .  (ảnh 1)

Đặt gx=x2xf2x2fx . Đồ thị hàm số y=gx  có bao nhiêu đường tiệm cận đứng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Điều kiện xác định f2x2fx0fx0fx2 .

Ta có f2x2fx=0fx=0fx=2 .

Dựa vào đồ thị ta có fx=0  có hai nghiệm x=x1<0  x=1  (nghiệm kép).

                                fx=2x=x2x1;1x=0x=x3>1 .

Vậy biểu thức f2x2fx=fxfx2

                                         =a2xx1x12.xxx2xx3

Khi đó ta có gx=x2xf2x2fx=1a2x1xx1xx2xx3.

Vậy đồ thị hàm số có bốn đường tiệm cận đứng.

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Điều kiện x1;x2 .

limx±y=1  nên đồ thị luôn có một đường tiệm cận ngang y=1  với mọi m.

Ta có x23x+2x=1x=2 .

Xét fx=x2+m . Để đồ thị hàm số có đúng hai đường tiệm cận thì fx  phải nhận x=1 hoặc x=2 là nghiệm hay f1=0f2=0m+1=0m+4=0m=1m=4 .

·    Với m=1 , ta có hàm số y=x21x23x+2=x+1x2  nên đồ thị có hai đường tiệm cận là x=2;y=1  (thỏa mãn).

·    Với m=4 , ta có hàm số y=x24x23x+2=x+2x1  nên đồ thị có hai đường tiệm cận là  x=1;y=1(thỏa mãn).

Vậy S=1;4  nên tổng các giá trị m bằng -5.

Chọn A.

Lời giải

Hướng dẫn giải

Dựa vào đồ thị, ta suy ra tiệm cận đứng và tiệm cận ngang của đồ thị lần lượt là các đường thẳng x=1,  y=2 .

Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP