Câu hỏi:

27/01/2023 9,180 Lưu

Gọi S là tập các giá trị nguyên dương của tham số m để đồ thị hàm số y=x+2x2+2x+m23m  có ba tiệm cận. Tổng các giá trị của tập S bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Điều kiện x2+2x+m23m0 .

Ta có limx±y=0  đồ thị hàm số luôn có một tiệm cận ngang y=0 .

Số đường tiệm cận đứng của hàm số đã cho là số nghiệm khác -2 của phương trình x2+2x+m23m=0  nên để đồ thị hàm số y=x+2x2+2x+m23m  có ba tiệm cận thì phương trình x2+2x+m23m=0  phải có hai nghiệm phân biệt khác -2.

1m2+3m>0m23m03132<m<3+132m0,m3.

Do m nguyên dương nên m1;2 .

Vậy tổng các giá trị của tập S bằng 3.

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Điều kiện x1;x2 .

limx±y=1  nên đồ thị luôn có một đường tiệm cận ngang y=1  với mọi m.

Ta có x23x+2x=1x=2 .

Xét fx=x2+m . Để đồ thị hàm số có đúng hai đường tiệm cận thì fx  phải nhận x=1 hoặc x=2 là nghiệm hay f1=0f2=0m+1=0m+4=0m=1m=4 .

·    Với m=1 , ta có hàm số y=x21x23x+2=x+1x2  nên đồ thị có hai đường tiệm cận là x=2;y=1  (thỏa mãn).

·    Với m=4 , ta có hàm số y=x24x23x+2=x+2x1  nên đồ thị có hai đường tiệm cận là  x=1;y=1(thỏa mãn).

Vậy S=1;4  nên tổng các giá trị m bằng -5.

Chọn A.

Lời giải

Hướng dẫn giải

Dựa vào đồ thị, ta suy ra tiệm cận đứng và tiệm cận ngang của đồ thị lần lượt là các đường thẳng x=1,  y=2 .

Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP