Câu hỏi:

27/01/2023 3,186

Tính tổng tất cả các giá trị nguyên của tham số m để đồ thị hàm số y=x23x+2x2mxm+5  không có đường tiệm cận đứng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Điều kiện x2mxm+50 .

Đặt fx=x23x+2,gx=x2mxm+5 .

Ta có fx=0x=1x=2  là nghiệm đơn của tử thức.

Để đồ thị không có tiệm cận đứng, ta có các trường hợp sau

Trường hợp 1. Phương trình gx=0  vô nghiệm Δ=m2+4m20<0226<m<2+26 .

Do m  nên m6;5;...;2

Trường hợp 2.fx=0  nhận đồng thời x=1  x=2  làm nghiệm 1mm+5=042mm+5=0m=3 .

Thử lại, ta có y=x23x+2x23x+2=1 , khi đó đồ thị hàm số y=1  không có tiệm cận  loại.

Vậy các giá trị nguyên của m để đồ thị không có tiệm cận đứng là m6;5;...;2;3  nên tổng bằng   -15.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Dựa vào đồ thị, ta suy ra tiệm cận đứng và tiệm cận ngang của đồ thị lần lượt là các đường thẳng x=1,  y=2 .

Chọn D

Lời giải

Hướng dẫn giải

Điều kiện x1;x2 .

limx±y=1  nên đồ thị luôn có một đường tiệm cận ngang y=1  với mọi m.

Ta có x23x+2x=1x=2 .

Xét fx=x2+m . Để đồ thị hàm số có đúng hai đường tiệm cận thì fx  phải nhận x=1 hoặc x=2 là nghiệm hay f1=0f2=0m+1=0m+4=0m=1m=4 .

·    Với m=1 , ta có hàm số y=x21x23x+2=x+1x2  nên đồ thị có hai đường tiệm cận là x=2;y=1  (thỏa mãn).

·    Với m=4 , ta có hàm số y=x24x23x+2=x+2x1  nên đồ thị có hai đường tiệm cận là  x=1;y=1(thỏa mãn).

Vậy S=1;4  nên tổng các giá trị m bằng -5.

Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP