Câu hỏi:

28/01/2023 468

Cho hàm số y=x1x+2, gọi d là tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng m2. Biết đường thẳng d cắt tiệm cận đứng của đồ thị hàm số tại điểm Ax1;y1 và cắt tiệm cận ngang của đồ thị hàm số tại điểm Bx2;y2. Gọi S là tập hợp các số m sao cho x2+y1=5. Tổng bình phương các phần tử của S bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Điều kiện m22m0.

Đồ thị hàm số có tiệm cận đứng Δ:x=2 và tiệm cận ngang Δ':y=1.

Ta có y'=3x+22y'm2=3m2 ym2=m3m.

Phương trình đường thẳng dy=3m2xm+2+m3m.

A=dΔA2;m6mB=dΔ'B2m2;1

Do đó x2+y1=52m2+m6m=52m2+4m6=0m=1m=3.

Vậy S=32+12=10.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Điều kiện x1;x2 .

limx±y=1  nên đồ thị luôn có một đường tiệm cận ngang y=1  với mọi m.

Ta có x23x+2x=1x=2 .

Xét fx=x2+m . Để đồ thị hàm số có đúng hai đường tiệm cận thì fx  phải nhận x=1 hoặc x=2 là nghiệm hay f1=0f2=0m+1=0m+4=0m=1m=4 .

·    Với m=1 , ta có hàm số y=x21x23x+2=x+1x2  nên đồ thị có hai đường tiệm cận là x=2;y=1  (thỏa mãn).

·    Với m=4 , ta có hàm số y=x24x23x+2=x+2x1  nên đồ thị có hai đường tiệm cận là  x=1;y=1(thỏa mãn).

Vậy S=1;4  nên tổng các giá trị m bằng -5.

Chọn A.

Lời giải

Hướng dẫn giải

Dựa vào đồ thị, ta suy ra tiệm cận đứng và tiệm cận ngang của đồ thị lần lượt là các đường thẳng x=1,  y=2 .

Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP