Câu hỏi:

29/01/2023 524

Cho hàm số y=x+bax2ab2,a0 . Biết rằng a và b là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm A1;2  song song với đường thẳng d:3x+y4=0 . Khi đó giá trị của a3b  bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Ta có: y'=2abax22y'1=2aba22

Do tiếp tuyến song song với đường thẳng d:3x+y4=0y=3x+4  nên y'1=32aba22=3 .

Mặt khác A1;2  thuộc đồ thị hàm số nên 2=1+ba2b=2a+3.

Khi đó ta có hệ 2aba22=3b=2a+35a215a+10=0a=2a=1

+ Với a=2b=1ab=2  (loại) 

+ Với a=1b=1  ( thỏa mãn điều kiện).

Khi đó ta có hàm số y=x+1x2 

 y'=3x22y'1=3 nên phương trình tiếp tuyến là y=3x+1  song song với đường thẳng y=3x+4  .

Vậy a3b=2 .

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có y'=3x2+1y'2=11

Phương trình tiếp tuyến của đồ thị hàm số tại điểm  M2;8 và y=11x+2+8.

Suy ra hệ số góc của tiếp tuyến là k=11.

Chọn A.

Lời giải

Hướng dẫn giải

Do tiếp tuyến cắt Ox, Oy tại hai điểm A, B mà OA=4OB  .

Khi đó ΔOAB  vuông tại O và ta có k=tanOAB^=OBOA=14k=±14

Ta có: y'=1x12

Xét phương trình 1x12=14  (vô nghiệm).

Xét phương trình 1x12=14x=3x=1

+ Với x=3 thì y=52 . Phương trình tiếp tuyến là

y=14x3+52=14x+134.

+ Với x=-1  thì y=32 . Phương trình tiếp tuyến là

y=14x+1+32=14x+54

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số y=2xx+2  có đồ thị (C). Phương trình tiếp tuyến của (C) tạo với hai trục tọa độ một tam giác có diện tích bằng 118   

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay