Câu hỏi:

04/02/2023 515

Cho hàm số y=x+12x1 có đồ thị (H). Gọi Ax1;y1,Bx2;y2  là hai điểm phân biệt thuộc (H) sao cho tiếp tuyến của (H) tại A , B có cùng hệ số góc k . Biết diện tích tam giác OAB bằng 12 . Mệnh đề nào dưới đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Ta có: y'=32x12

Tiếp tuyến tại A, B của (H) có cùng hệ số góc k nên x1,x2  là hai nghiệm phân biệt của phương trình 32x12=kk<0 .

Suy ra 4kx24kx+k+3=0*  nên x1+x2=1x1.x2=k+34k

Khi đó do vai trò của A, B như nhau nên ta có thể giả sử x1=12a+12,a>0  thì A12a+12;a+32a,B12a+12;a32a .

Áp dụng công thức tính diện tích tam giác ABC nếu có AB=a;b,  AC=c;d  thì SΔABC=12adbc .

Ta có OA=12a+12;a+32a,  OB=12a+12;a32a

SΔOAB=12a+12a32aa+12.a+32a=14a23a=12

a23a=2a22a3=0a2+2a3=0a=3a=1

 ( vì a > 0).

+ Với a=3x1=2;x2=1k=13.

+ Với a=1x1=1;x2=0k=3.

Vậy giá trị của k là k=3;  k=13 .

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có y'=3x2+1y'2=11

Phương trình tiếp tuyến của đồ thị hàm số tại điểm  M2;8 và y=11x+2+8.

Suy ra hệ số góc của tiếp tuyến là k=11.

Chọn A.

Lời giải

Hướng dẫn giải

Do tiếp tuyến cắt Ox, Oy tại hai điểm A, B mà OA=4OB  .

Khi đó ΔOAB  vuông tại O và ta có k=tanOAB^=OBOA=14k=±14

Ta có: y'=1x12

Xét phương trình 1x12=14  (vô nghiệm).

Xét phương trình 1x12=14x=3x=1

+ Với x=3 thì y=52 . Phương trình tiếp tuyến là

y=14x3+52=14x+134.

+ Với x=-1  thì y=32 . Phương trình tiếp tuyến là

y=14x+1+32=14x+54

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số y=2xx+2  có đồ thị (C). Phương trình tiếp tuyến của (C) tạo với hai trục tọa độ một tam giác có diện tích bằng 118   

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay