Câu hỏi:

18/11/2019 1,425 Lưu

Cho hàm số y = f(x) = ax +bcx + d ( a,b,c,d  -dc 0) đồ thị hàm số y= f’(x) như hình vẽ.

Biết đồ thị hàm số y= f(x)  cắt trục tung tại điểm có tung độ bằng 3. Tìm phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành ?

 

A. y = x-3x+1

B. y = x+3x-1

C. y = x+ 3x+1

D. y = x - 3x -1

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

+ Ta có y' = f'(x) = ad - bc(cx + d)2 . Từ đồ thị hàm số y= f’(x)  ta thấy:

Đồ thị hàm số y= f’(x)  có tiệm cận đứng x=1 nên –d/c= 1 hay  c= -d

Đồ thị hàm số y= f’(x )  đi qua điểm (2;2)

ad - bc(2c + d)2 = 2 ad - bc = 2 (2c+d)2

Đồ thị hàm số y= f’(x)  đi qua điểm (0;2)

ad - bcd2 = 2 ad - bc = 2d2

Đồ thị hàm số y=f(x)  đi qua điểm (0;3) nên b/d= 3 hay b= 3d

Giải hệ  gồm 4 pt này ta được a=c= -d và b= 3d  .

 Ta chọn a=c= 1 ; b= -3 ; d= -1  

y = x - 3x -1 

Chọn  D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Đạo hàm f'(x) = 1 - m(x+1)2.

+ Suy ra hàm số f(x)  là hàm số đơn điệu trên đoạn [1; 2]  với mọi m≠ 1.

+ Khi đó ta có :

min y[1;2] + max[1;2] y = f(1) +f(2)  m+12+ m+23 = 1635m6 = 256 m = 5

Chọn D.

Lời giải

Ta có SEFGH nhỏ nhất  S = SAEH + SCGF +SDGH  lớn nhất

Tính được 2S= 2x+ 3y+ (6-x) (6-y) = xy-4x-3y+36          (1)

Mặt khác ∆ AEH đồng dạng  ∆CGF nên  AECG = AHCF  xy = 6

Từ (1) và (2) suy ra  2S = 42 - (4x -18x)

Ta có 2S  lớn nhất khi và chỉ khi  4x - 18xnhỏ nhất.

Biểu thức nhỏ nhất  4x - 18x nhỏ nhất   4x = 18x x = 322  y = 22

Vậy  x+y = 322+22

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP