Câu hỏi:

18/11/2019 10,351 Lưu

Cho hàm số y= f(x)  xác định trên R  và có đồ thị như hình bên. Hỏi với những giá trị nào của tham số thực m thì phương trình  f(x) = m có đúng hai nghiệm phân biệt.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Ta có y = f(x) = f(x)  , f(x)  0-f(x),  f(x) <0. Từ đó suy ra cách vẽ  đồ thị hàm số (C) như sau:

- Giữ nguyên đồ thị y= f (x)  phía trên trục hoành.

- Lấy đối xứng phần đồ thị y= f(x)  phía dưới trục hoành qua trục hoành ( bỏ phần dưới ).

Kết hợp hai phần ta được đồ thị hàm số  y = f(x) như hình vẽ.

Phương trình f(x) = m  là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng

y= m  (cùng phương với trục hoành).

Dựa vào đồ thị, ta có ycbt

 

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Đạo hàm f'(x) = 1 - m(x+1)2.

+ Suy ra hàm số f(x)  là hàm số đơn điệu trên đoạn [1; 2]  với mọi m≠ 1.

+ Khi đó ta có :

min y[1;2] + max[1;2] y = f(1) +f(2)  m+12+ m+23 = 1635m6 = 256 m = 5

Chọn D.

Lời giải

Đạo hàm f'(x) = m2-m+1(x+1)2> 0, x  [0;1] 

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP