Câu hỏi:

17/02/2021 16,336 Lưu

Cho hàm số y= f(x)  xác định trên   R  và có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số m để phương trình

2f(x) - m = 0 có đúng bốn nghiệm phân biệt. 

A. 0< m< 8

B.m> 4

C.m< 0 ; m> 8

D. -2< m< 4

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

+ Trước tiên từ đồ thị hàm số y = f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây: 

Phương trình 2|f(x)| - m = 0 hay |f(x)| = m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m/2.

Dựa vào đồ thị hàm số  y = |f(x)|, ta có ycbt trở thành:

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Đạo hàm f'(x) = 1 - m(x+1)2.

+ Suy ra hàm số f(x)  là hàm số đơn điệu trên đoạn [1; 2]  với mọi m≠ 1.

+ Khi đó ta có :

min y[1;2] + max[1;2] y = f(1) +f(2)  m+12+ m+23 = 1635m6 = 256 m = 5

Chọn D.

Lời giải

Ta có SEFGH nhỏ nhất  S = SAEH + SCGF +SDGH  lớn nhất

Tính được 2S= 2x+ 3y+ (6-x) (6-y) = xy-4x-3y+36          (1)

Mặt khác ∆ AEH đồng dạng  ∆CGF nên  AECG = AHCF  xy = 6

Từ (1) và (2) suy ra  2S = 42 - (4x -18x)

Ta có 2S  lớn nhất khi và chỉ khi  4x - 18xnhỏ nhất.

Biểu thức nhỏ nhất  4x - 18x nhỏ nhất   4x = 18x x = 322  y = 22

Vậy  x+y = 322+22

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP