Cho hàm số y= f(x) xác định trên R và có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số m để phương trình
2 - m = 0 có đúng bốn nghiệm phân biệt.
A. 0< m< 8
B.m> 4
C.m< 0 ; m> 8
D. -2< m< 4
Quảng cáo
Trả lời:

+ Trước tiên từ đồ thị hàm số y = f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây:
Phương trình 2|f(x)| - m = 0 hay |f(x)| = m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m/2.
Dựa vào đồ thị hàm số y = |f(x)|, ta có ycbt trở thành:
Chọn A.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. m=0
B. m= 2
C. m= 4
D. m= 5
Lời giải
+ Đạo hàm f'(x) = .
+ Suy ra hàm số f(x) là hàm số đơn điệu trên đoạn [1; 2] với mọi m≠ 1.
+ Khi đó ta có :
Chọn D.
Lời giải
Ta có SEFGH nhỏ nhất lớn nhất
Tính được 2S= 2x+ 3y+ (6-x) (6-y) = xy-4x-3y+36 (1)
Mặt khác ∆ AEH đồng dạng ∆CGF nên
Từ (1) và (2) suy ra 2S =
Ta có 2S lớn nhất khi và chỉ khi nhỏ nhất.
Biểu thức nhỏ nhất nhỏ nhất
Vậy x+y =
Chọn D.
Câu 3
A. m= 1
B. m= -2
C. m= -1
D. m= -1 hoặc m= 2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 2.
B. 0.
C. 6.
D. 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. -4
B. 2
C. 0
D . -2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. ½< m< 1
B. 0< m
C. m> 1
D. m< 1/2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.