Câu hỏi:

17/02/2021 18,381

Cho hàm số y = x3- 3x + 1 . Tìm tìm tập hợp tất cả giá trị m> 0 , để giá trị nhỏ nhất của hàm số trên D = [m + 1; m + 2] luôn bé hơn 3 là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Ta có đạo hàm: y = 3x2- 3 và y’ =0 khi và chỉ khi x = 1 hoặc x = -1 .       

+ Hàm số đồng biến trên khoảng (1; +∞) .

+ Trên  D= [m + 1; m + 2], với m > 0  ,

ta có :  Min[m+1;m+2] y = (m+1)3 -3(m+1) +1

Ycbt min y < 3 hay m3 + 3m2 - 4 < 0

 Suy  ra ( m - 1)(m + 2) 2) < 0

Khi đó: m < 1 và m ≠ - 2  ­­­

+ Kết hợp điều kiện ­. Suy ra: 0 < m < 1.

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Đạo hàm f'(x) = 1 - m(x+1)2.

+ Suy ra hàm số f(x)  là hàm số đơn điệu trên đoạn [1; 2]  với mọi m≠ 1.

+ Khi đó ta có :

min y[1;2] + max[1;2] y = f(1) +f(2)  m+12+ m+23 = 1635m6 = 256 m = 5

Chọn D.

Lời giải

Đạo hàm f'(x) = m2-m+1(x+1)2> 0, x  [0;1] 

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP