Câu hỏi:

11/09/2022 2,875

Cho tập hợp A=1;2;3;4;...;2018  và các số  a,b,cA. Hỏi có bao nhiêu số tự nhiên có dạng abc¯   sao cho  a<b<c và a+b+c=2016?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Nhận xét 2016=1+1+1+...+1  gồm 2015 dấu

Chọn 2 dấu + trong 2015 dấu + để hình thành các số a,b,c  C20152  cách.

Suy ra có C20152  cách chọn 3 số có tổng bằng 2016 (tính cả các hoán vị).

Ta xét các trường hợp:

Trường hợp 1 : a=b=c=672, có 1 số.

Trường hợp 2: có 2 trong 3 số bằng nhau, chẳng hạn  a=bc2a+c=2016.

Khi đó c chẵn do c=21008a.

Vì  a1 nên c2014 . Do đó c2;4;6;...;2014\672.

Vậy có 1006 cách chọn c.

Bộ  a;a;ccó 3 hoán vị.

Vậy số cách chọn ở trường hợp 2 là 1006.3=3018 cách.

Vây C2015213018=2026086  số abc¯  thỏa mãn abca+b+c=2016 .

Mỗi bộ số a;b;c  được lập có 3!=6  cách hoán đổi vị trí.

Do đó số cách lập bộ số a;b;c  thỏa yêu cầu a<b<c   là 20260866=337681.

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 9?

Xem đáp án » 10/09/2022 5,217

Câu 2:

Cho ba số 1,2,3. Có thể lập được bao nhiêu số tự nhiên có 6 chữ số sao cho 2 chữ số giống nhau không đứng kề nhau?

Xem đáp án » 11/09/2022 1,854

Câu 3:

Cho tập từ tập A={0;1;2;3;4;5;6} có thể lập được bao nhiêu số tự nhiên có 5 chữ số và chia hết cho 2?

Xem đáp án » 11/09/2022 1,210

Câu 4:

Từ các chữ số 2;3;4 lập được bao nhiêu số tự nhiên có 9 chữ số, trong đó chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số 4 có mặt 4 lần?

Xem đáp án » 11/09/2022 949

Câu 5:

Có bao nhiêu số có 5 chữ số tận cùng là 1 và chia hết cho 7?

Xem đáp án » 11/09/2022 891

Câu 6:

Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và không chia hết cho 5?

Xem đáp án » 11/09/2022 585

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store