Câu hỏi:

12/07/2024 3,296

Vị trí của một chất điểm M tại thời điểm t (t trong khoảng thời gian từ 0 phút đến 180 phút) có toạ độ là (3 + 5sin t°; 4 + 5cos t°). Tìm toạ độ của chất điểm M khi M ở cách xa gốc toạ độ nhất.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Từ cách xác định toạ độ của chất điểm M ta có

\(\left\{ {\begin{array}{*{20}{c}}{{x_M} = 3 + 5\sin t^\circ }\\{{y_M} = 4 + 5\cos t^\circ }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_M} - 3 = 5\sin t^\circ }\\{{y_M} - 4 = 5\cos t^\circ }\end{array}} \right.\)

(xM – 3)2 + (yM – 4)2 = (5sin t°)2 + (5cos t°)2

(xM – 3)2 + (yM – 4)2 = 25(sin t°)2 + 25(cos t°)2

(xM – 3)2 + (yM – 4)2 = 25[(sin t°)2 + (cos t°)2]

(xM – 3)2 + (yM – 4)2 = 25.1

(xM – 3)2 + (yM – 4)2 = 25

Vậy chất điểm M luôn thuộc đường tròn (C) có tâm I(3; 4) và có bán kính R = \(\sqrt {25} \) = 5. Mặt khác gốc toạ độ O(0; 0) cũng thuộc đường tròn (C).

Do đó ta có: OM ≤ 2R = 10

Dấu bằng xảy ra khi và chỉ khi OM là đường kính của đường tròn (C), nghĩa là I là trung điểm của OM, điều đó tương đương với

\(\left\{ {\begin{array}{*{20}{c}}{{x_M} = 2{x_I} - {x_O} = 6}\\{{y_M} = 2{y_I} - {y_O} = 8}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3 + 5\sin t^\circ = 6}\\{4 + 5\cos t^\circ = 8}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\sin t^\circ = \frac{3}{5}}\\{\cos t^\circ = \frac{4}{5}}\end{array}} \right. \Leftrightarrow t \approx 37\) (có t (0; 180)).

Vậy M(6; 8) thỏa mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Viết phương trình đường tròn (C) có tâm thuộc đường thẳng Δ: x + y – 1 = 0 và đi qua hai điểm A(6; 2), B(–1; 3).

Xem đáp án » 12/07/2024 10,833

Câu 2:

Có đường kính AB với A(4; 1), B(–2; –5).

Xem đáp án » 12/07/2024 4,804

Câu 3:

Có tâm I(2; –4) và tiếp xúc với đường thẳng Δ: 3x – 2y – 1 = 0.

Xem đáp án » 12/07/2024 3,277

Câu 4:

Cho đường tròn (C) có phương trình x2 + y2 + 6x – 4y – 12 = 0. Viết phương trình tiếp tuyến Δ của (C) tại điểm M(0; –2).

Xem đáp án » 12/07/2024 2,852

Câu 5:

Viết phương trình đường tròn (C) có tâm thuộc đường thẳng d' và tiếp xúc với d tại điểm A.

Xem đáp án » 12/07/2024 2,033

Câu 6:

Có tâm I(3; 1) và đi qua điểm M(–1; 7).

Xem đáp án » 12/07/2024 1,669

Bình luận


Bình luận