Câu hỏi:
12/07/2024 3,296Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hướng dẫn giải
Từ cách xác định toạ độ của chất điểm M ta có
\(\left\{ {\begin{array}{*{20}{c}}{{x_M} = 3 + 5\sin t^\circ }\\{{y_M} = 4 + 5\cos t^\circ }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_M} - 3 = 5\sin t^\circ }\\{{y_M} - 4 = 5\cos t^\circ }\end{array}} \right.\)
⇔ (xM – 3)2 + (yM – 4)2 = (5sin t°)2 + (5cos t°)2
⇔ (xM – 3)2 + (yM – 4)2 = 25(sin t°)2 + 25(cos t°)2
⇔ (xM – 3)2 + (yM – 4)2 = 25[(sin t°)2 + (cos t°)2]
⇔ (xM – 3)2 + (yM – 4)2 = 25.1
⇔ (xM – 3)2 + (yM – 4)2 = 25
Vậy chất điểm M luôn thuộc đường tròn (C) có tâm I(3; 4) và có bán kính R = \(\sqrt {25} \) = 5. Mặt khác gốc toạ độ O(0; 0) cũng thuộc đường tròn (C).
Do đó ta có: OM ≤ 2R = 10
Dấu bằng xảy ra khi và chỉ khi OM là đường kính của đường tròn (C), nghĩa là I là trung điểm của OM, điều đó tương đương với
\(\left\{ {\begin{array}{*{20}{c}}{{x_M} = 2{x_I} - {x_O} = 6}\\{{y_M} = 2{y_I} - {y_O} = 8}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3 + 5\sin t^\circ = 6}\\{4 + 5\cos t^\circ = 8}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\sin t^\circ = \frac{3}{5}}\\{\cos t^\circ = \frac{4}{5}}\end{array}} \right. \Leftrightarrow t \approx 37\) (có t ∈ (0; 180)).
Vậy M(6; 8) thỏa mãn yêu cầu đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 5:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
75 câu trắc nghiệm Vectơ nâng cao (P1)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Số gần đúng và sai số có đáp án
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Mệnh đề có đáp án
về câu hỏi!