Câu hỏi:

12/07/2024 6,095

Cho parabol (P) có phương trình là y2 = 16x. Gọi Δ là đường thẳng bất kì đi qua tiêu điểm F của (P) và không trùng với trục hoành. Chứng minh rằng Δ luôn cắt (P) tại hai điểm phân biệt A, B, đồng thời tích các khoảng cách từ A và B đến trục hoành không đổi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi vectơ chỉ phương của Δ là \(\overrightarrow {{u_\Delta }} = \left( {a;b} \right)\). Vì Δ đi qua điểm F(4; 0) và Δ không trùng với trục Ox nên ta có b ≠ 0. Phương trình tham số của Δ là

\(\left\{ {\begin{array}{*{20}{c}}{x = 4 + at}\\{y = 0 + bt = bt}\end{array}} \right.\).

Toạ độ giao điểm của Δ và (P) ứng với thoả mãn phương trình

(bt)2 =16 . (4 + at) b2t2 – 16at – 64 = 0. (1)

Phương trình (1) có Δ’ = 64a2 + 64b2 > 0 (do b ≠ 0), suy ra phương trình (1) luôn có 2 nghiệm phân biệt. Vậy Δ luôn cắt (P) tại hai điểm phân biệt A, B.

Gọi A(4 + at1; bt1), B(4 + at2; bt2), trong đó t1, t2 là hai nghiệm của phương trình (1).

Ta có

\(d\left( {A,Ox} \right).d\left( {B,Ox} \right) = \frac{{\left| {b{t_1}} \right|}}{{\sqrt {{0^2} + {1^2}} }}.\frac{{\left| {b{t_2}} \right|}}{{\sqrt {{0^2} + {1^2}} }} = \left| {{b^2}.{t_1}{t_2}} \right|\)

Dựa vào phương trình (1). Theo định lí Vi–ét ta có: \({t_1}{t_2} = \frac{{ - 64}}{{{b^2}}}\). Từ đó suy ra

\(d\left( {A,Ox} \right).d\left( {B,Ox} \right) = \left| {{b^2}.\frac{{ - 64}}{{{b^2}}}} \right| = 64\)

Vậy tích các khoảng cách từ A và B đến trục hoành không đổi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Giả sử phương trình chính tắc của (E) là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a > b > 0).

Vì chiều rộng của hầm là 12 m nên OA = 12 : 2 = 6 (m), do đó điểm A có tọa độ (6; 0).

Khoảng cách từ điểm cao nhất của elip so với mặt đường là 3 m nên OB = 3 m, do đó điểm B có tọa độ (0; 3).

Do các điểm B(0; 3) và A(6; 0) thuộc (E) nên thay vào phương trình của (E) ta có:

\(\frac{{{0^2}}}{{{a^2}}} + \frac{{{3^2}}}{{{b^2}}} = 1 \Rightarrow {b^2} = {3^2} = 9\)

\(\frac{{{6^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1 \Rightarrow {a^2} = {6^2} = 36\)

Suy ra phương trình của (E) là

\(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\).

Với những xe tải có chiều cao 2,8 m, chiều rộng của xe tải là 3 m, nếu xe chạy chính giữa hầm thì khoảng cách từ tâm xe tới mỗi bên xe khoảng 3 : 2 = 1,5 m, tương ứng với x = 1,5. Thay vào phương trình của elip để ta tìm ra độ cao y của điểm M (có hoành độ bằng 1,5 thuộc (E)) so với trục Ox.

\(\frac{{{x_M}^2}}{{36}} + \frac{{{y_M}^2}}{9} = 1\)

Suy ra: \({y_M} = 3.\sqrt {1 - \frac{{x_M^2}}{{36}}} = 3.\sqrt {1 - \frac{{{{1,5}^2}}}{{36}}} \approx 2,905 > 2,8\)

Kết luận: Ô tô tải có thể đi được qua hầm, tuy nhiên cần khuyến cáo ô tô phải đi vào chính giữa hầm.

Lời giải

Hướng dẫn giải

Xét đường elip như hình vẽ:

Media VietJack

Theo đề bài: Độ dài trục lớn, độ dài trục nhỏ của quỹ đạo lần lượt là 768 800 km và 767 640 km. Nên ta có:

2a = 768 800 và 2b = 767 640

Do đó, a = 384 400 và b = 383 820.

Từ đó suy ra \[c = \sqrt {{a^2} - {b^2}} = \sqrt {{{384400}^2} - {{383820}^2}} \approx 21108\].

Vì vậy,

Khoảng cách lớn nhất từ tâm của Trái Đất đến Mặt Trăng là

a + c ≈ 384 400 + 21 108 = 405 508 (km)

Khoảng cách nhỏ nhất từ tâm của Trái Đất đến Mặt Trăng là:

a – c ≈ 384 400 – 21 108 = 363 292 (km).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay