Câu hỏi:
12/07/2024 4,588Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi vectơ chỉ phương của Δ là \(\overrightarrow {{u_\Delta }} = \left( {a;b} \right)\). Vì Δ đi qua điểm F(4; 0) và Δ không trùng với trục Ox nên ta có b ≠ 0. Phương trình tham số của Δ là
\(\left\{ {\begin{array}{*{20}{c}}{x = 4 + at}\\{y = 0 + bt = bt}\end{array}} \right.\).
Toạ độ giao điểm của Δ và (P) ứng với thoả mãn phương trình
(bt)2 =16 . (4 + at) ⇔ b2t2 – 16at – 64 = 0. (1)
Phương trình (1) có Δ’ = 64a2 + 64b2 > 0 (do b ≠ 0), suy ra phương trình (1) luôn có 2 nghiệm phân biệt. Vậy Δ luôn cắt (P) tại hai điểm phân biệt A, B.
Gọi A(4 + at1; bt1), B(4 + at2; bt2), trong đó t1, t2 là hai nghiệm của phương trình (1).
Ta có
\(d\left( {A,Ox} \right).d\left( {B,Ox} \right) = \frac{{\left| {b{t_1}} \right|}}{{\sqrt {{0^2} + {1^2}} }}.\frac{{\left| {b{t_2}} \right|}}{{\sqrt {{0^2} + {1^2}} }} = \left| {{b^2}.{t_1}{t_2}} \right|\)
Dựa vào phương trình (1). Theo định lí Vi–ét ta có: \({t_1}{t_2} = \frac{{ - 64}}{{{b^2}}}\). Từ đó suy ra
\(d\left( {A,Ox} \right).d\left( {B,Ox} \right) = \left| {{b^2}.\frac{{ - 64}}{{{b^2}}}} \right| = 64\)
Vậy tích các khoảng cách từ A và B đến trục hoành không đổi.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
về câu hỏi!